Essential roles of Caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis

  1. Ian M Cartwright
  2. Xinjian Liu
  3. Min Zhou
  4. Fang Li
  5. Chuan-Yuan Li  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. Duke University Medical Center, United States

Abstract

The mechanism for Myc-induced genetic instability is not well understood. Here we show that sublethal activation of Caspase-3 plays an essential, facilitative role in Myc-induced genomic instability and oncogenic transformation. Overexpression of Myc resulted in increased numbers of chromosome aberrations and γH2AX foci in non-transformed MCF10A human mammary epithelial cells. However, such increases were almost completely eliminated in isogenic cells with CASP3 gene ablation. Furthermore, we show that endonuclease G, an apoptotic nuclease downstream of Caspase-3, is directly responsible Myc-induced genetic instability. Genetic ablation of either CASP3 or ENDOG prevented Myc-induced oncogenic transformation of MCF10A cells. Taken together, we believe that Caspase-3 plays a critical, unexpected role in mediating Myc-induced genetic instability and transformation in mammalian cells.

Article and author information

Author details

  1. Ian M Cartwright

    Department of Urology, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xinjian Liu

    Department of Dermatology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Zhou

    Department of Dermatology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fang Li

    Department of Dermatology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuan-Yuan Li

    Department of Dermatology, Duke University Medical Center, Durham, United States
    For correspondence
    chuan.li@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0418-6231

Funding

National Cancer Institute (CA155720)

  • Chuan-Yuan Li

National Institute of Environmental Health Sciences (ES024015)

  • Chuan-Yuan Li

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR066527)

  • Chuan-Yuan Li

National Cancer Institute (2008852)

  • Chuan-Yuan Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments conducted in this study were approved by the Duke University Institutional Animal Use and Care Committee (IACUC) with the protocol number A195-14-98.

Copyright

© 2017, Cartwright et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,150
    views
  • 341
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian M Cartwright
  2. Xinjian Liu
  3. Min Zhou
  4. Fang Li
  5. Chuan-Yuan Li
(2017)
Essential roles of Caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis
eLife 6:e26371.
https://doi.org/10.7554/eLife.26371

Share this article

https://doi.org/10.7554/eLife.26371

Further reading

    1. Cancer Biology
    2. Stem Cells and Regenerative Medicine
    Alison G Barber, Cynthia M Quintero ... Tannishtha Reya
    Research Article

    Despite advances in therapeutic approaches, lung cancer remains the leading cause of cancer-related deaths. To understand the molecular programs underlying lung cancer initiation and maintenance, we focused on stem cell programs that are normally extinguished with differentiation but can be reactivated during oncogenesis. Here, we have used extensive genetic modeling and patient-derived xenografts (PDXs) to identify a dual role for Msi2: as a signal that acts initially to sensitize cells to transformation, and subsequently to drive tumor propagation. Using Msi reporter mice, we found that Msi2-expressing cells were marked by a pro-oncogenic landscape and a preferential ability to respond to Ras and p53 mutations. Consistent with this, genetic deletion of Msi2 in an autochthonous Ras/p53-driven lung cancer model resulted in a marked reduction of tumor burden, delayed progression, and a doubling of median survival. Additionally, this dependency was conserved in human disease as inhibition of Msi2 impaired tumor growth in PDXs. Mechanistically, Msi2 triggered a broad range of pathways critical for tumor growth, including several novel effectors of lung adenocarcinoma. Collectively, these findings reveal a critical role for Msi2 in aggressive lung adenocarcinoma, lend new insight into the biology of this disease, and identify potential new therapeutic targets.

    1. Cancer Biology
    Rui Vasco Simoes, Rafael Neto Henriques ... Noam Shemesh
    Research Article

    Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.