A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways

  1. Fiona J Tooke
  2. Marion Babot
  3. Govind Chandra
  4. Grant Buchanan
  5. Tracy Palmer  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. John Innes Centre, United Kingdom

Abstract

The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.

Article and author information

Author details

  1. Fiona J Tooke

    Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Marion Babot

    Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Govind Chandra

    Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Grant Buchanan

    Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tracy Palmer

    Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    t.palmer@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9043-2592

Funding

Biotechnology and Biological Sciences Research Council (BB/L000768/1)

  • Marion Babot
  • Grant Buchanan

Medical Research Council (MR/K500896/1)

  • Fiona J Tooke

Biotechnology and Biological Sciences Research Council (BB/J004561/1)

  • Govind Chandra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reid Gilmore, University of Massachusetts Medical School, United States

Version history

  1. Received: March 7, 2017
  2. Accepted: May 15, 2017
  3. Accepted Manuscript published: May 17, 2017 (version 1)
  4. Version of Record published: May 30, 2017 (version 2)

Copyright

© 2017, Tooke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,601
    views
  • 558
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fiona J Tooke
  2. Marion Babot
  3. Govind Chandra
  4. Grant Buchanan
  5. Tracy Palmer
(2017)
A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways
eLife 6:e26577.
https://doi.org/10.7554/eLife.26577

Share this article

https://doi.org/10.7554/eLife.26577

Further reading

    1. Biochemistry and Chemical Biology
    Valentina Kugler, Selina Schwaighofer ... Eduard Stefan
    Research Article

    Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.