Mechanism of bidirectional thermotaxis in Escherichia coli

  1. Anja Paulick
  2. Vladimir Jakovljevic
  3. SiMing Zhang
  4. Michael Erickstad
  5. Alex Groisman
  6. Yigal Meir
  7. William S Ryu
  8. Ned S Wingreen
  9. Victor Sourjik  Is a corresponding author
  1. Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Germany
  2. Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
  3. University of Toronto, Canada
  4. University of California, San Diego, United States
  5. Ben Gurion University, Israel
  6. Princeton University, United States
  7. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior.

Article and author information

Author details

  1. Anja Paulick

    Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7103-6287
  2. Vladimir Jakovljevic

    DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. SiMing Zhang

    Department of Physics and Donelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Erickstad

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alex Groisman

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yigal Meir

    Department of Physics, Ben Gurion University, Beersheba, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. William S Ryu

    Department of Physics and Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0350-7507
  8. Ned S Wingreen

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7384-2821
  9. Victor Sourjik

    Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    victor.sourjik@synmikro.mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1053-9192

Funding

National Institutes of Health (R01 GM082938)

  • Vladimir Jakovljevic
  • Yigal Meir
  • William S Ryu
  • Ned S Wingreen
  • Victor Sourjik

H2020 European Research Council (294761-MicRobE)

  • Vladimir Jakovljevic
  • Victor Sourjik

Max-Planck-Institut für Terrestrische Mikrobiologie (Open-access funding)

  • Victor Sourjik

National Science Foundation (PHY-1411313)

  • Alex Groisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Paulick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,009
    views
  • 553
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anja Paulick
  2. Vladimir Jakovljevic
  3. SiMing Zhang
  4. Michael Erickstad
  5. Alex Groisman
  6. Yigal Meir
  7. William S Ryu
  8. Ned S Wingreen
  9. Victor Sourjik
(2017)
Mechanism of bidirectional thermotaxis in Escherichia coli
eLife 6:e26607.
https://doi.org/10.7554/eLife.26607

Share this article

https://doi.org/10.7554/eLife.26607

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hiroyuki Yamamoto, Tetsuro Matano
    Research Article

    HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus–host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus–host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.