Mechanism of bidirectional thermotaxis in Escherichia coli

  1. Anja Paulick
  2. Vladimir Jakovljevic
  3. SiMing Zhang
  4. Michael Erickstad
  5. Alex Groisman
  6. Yigal Meir
  7. William S Ryu
  8. Ned S Wingreen
  9. Victor Sourjik  Is a corresponding author
  1. Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Germany
  2. Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
  3. University of Toronto, Canada
  4. University of California, San Diego, United States
  5. Ben Gurion University, Israel
  6. Princeton University, United States
  7. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior.

Article and author information

Author details

  1. Anja Paulick

    Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7103-6287
  2. Vladimir Jakovljevic

    DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. SiMing Zhang

    Department of Physics and Donelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Erickstad

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alex Groisman

    Department of Physics, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yigal Meir

    Department of Physics, Ben Gurion University, Beersheba, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. William S Ryu

    Department of Physics and Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0350-7507
  8. Ned S Wingreen

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7384-2821
  9. Victor Sourjik

    Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    victor.sourjik@synmikro.mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1053-9192

Funding

National Institutes of Health (R01 GM082938)

  • Vladimir Jakovljevic
  • Yigal Meir
  • William S Ryu
  • Ned S Wingreen
  • Victor Sourjik

H2020 European Research Council (294761-MicRobE)

  • Vladimir Jakovljevic
  • Victor Sourjik

Max-Planck-Institut für Terrestrische Mikrobiologie (Open-access funding)

  • Victor Sourjik

National Science Foundation (PHY-1411313)

  • Alex Groisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Paulick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,908
    views
  • 540
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anja Paulick
  2. Vladimir Jakovljevic
  3. SiMing Zhang
  4. Michael Erickstad
  5. Alex Groisman
  6. Yigal Meir
  7. William S Ryu
  8. Ned S Wingreen
  9. Victor Sourjik
(2017)
Mechanism of bidirectional thermotaxis in Escherichia coli
eLife 6:e26607.
https://doi.org/10.7554/eLife.26607

Share this article

https://doi.org/10.7554/eLife.26607

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Daniel Spari, Annina Schmid ... Guido Beldi
    Research Article

    Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.