1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes

  1. Hongki Song
  2. Amy S Orr
  3. Mengtong Duan
  4. Alexey J Merz
  5. William T Wickner  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States
  2. University of Washington, United States
Research Article
  • Cited 19
  • Views 1,283
  • Annotations
Cite this article as: eLife 2017;6:e26646 doi: 10.7554/eLife.26646

Abstract

At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes.

Article and author information

Author details

  1. Hongki Song

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amy S Orr

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mengtong Duan

    Departments of Biochemistry and Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexey J Merz

    Departments of Biochemistry and Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2177-6492
  5. William T Wickner

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    William.T.Wickner@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-0468

Funding

National Institutes of Health (R01 GM23377-40)

  • William T Wickner

National Institutes of Health (R35GM118037-01)

  • William T Wickner

National Institutes of Health (GM077349)

  • Alexey J Merz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University Medical Center, United States

Publication history

  1. Received: March 8, 2017
  2. Accepted: July 17, 2017
  3. Accepted Manuscript published: July 18, 2017 (version 1)
  4. Version of Record published: August 2, 2017 (version 2)

Copyright

© 2017, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,283
    Page views
  • 270
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Joseph Shaw et al.
    Research Article Updated

    Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or ‘viroporins’, contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eric Franklin, Martin Jonikas
    Insight

    A mechanism for concentrating carbon dioxide has for the first time been successfully transferred into a species that lacks such a process.