Task-dependent recurrent dynamics in visual cortex

  1. Satohiro Tajima  Is a corresponding author
  2. Kowa Koida
  3. Chihiro I Tajima
  4. Hideyuki Suzuki
  5. Kazuyuki Aihara
  6. Hidehiko Komatsu
  1. University of Geneva, Switzerland
  2. Toyohashi University of Technology, Japan
  3. The University of Tokyo, Japan
  4. Osaka University, Japan
  5. University of Tokyo, Japan
  6. National Institute for Physiological Sciences, Japan

Abstract

The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities.

Article and author information

Author details

  1. Satohiro Tajima

    Department of Basic Neuroscience, University of Geneva, Genève, Switzerland
    For correspondence
    satohiro.tajima@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9597-1381
  2. Kowa Koida

    EIIRIS, Toyohashi University of Technology, Toyohashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Chihiro I Tajima

    Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hideyuki Suzuki

    Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kazuyuki Aihara

    Institute of Industrial Science, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4602-9816
  6. Hidehiko Komatsu

    National Institute for Physiological Sciences, Aichi, Japan
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Science and Technology Agency (PRESTO)

  • Satohiro Tajima

Japan Science and Technology Agency (CREST)

  • Kazuyuki Aihara

Japan Society for the Promotion of Science (KAKENHI 15H05707)

  • Kazuyuki Aihara

Japan Science and Technology Agency (Center of Innovation Program from Japan)

  • Hidehiko Komatsu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Okazaki National Research Institutes. The protocol was approved by the Animal Experiment Committee of the Okazaki National Research Institutes (Permit Number: A16-86-29). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Tajima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,832
    views
  • 541
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Satohiro Tajima
  2. Kowa Koida
  3. Chihiro I Tajima
  4. Hideyuki Suzuki
  5. Kazuyuki Aihara
  6. Hidehiko Komatsu
(2017)
Task-dependent recurrent dynamics in visual cortex
eLife 6:e26868.
https://doi.org/10.7554/eLife.26868

Share this article

https://doi.org/10.7554/eLife.26868

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.