Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II

  1. Miao Zhang
  2. Martin Bommer
  3. Ruchira Chatterjee
  4. Rana Hussein
  5. Junko Yano
  6. Holger Dau  Is a corresponding author
  7. Jan Kern  Is a corresponding author
  8. Holger Dobbek
  9. Athina Zouni  Is a corresponding author
  1. Humboldt-Universität zu Berlin, Germany
  2. Max-Delbrück-Center for Molecular Medicine, Germany
  3. Lawrence Berkeley National Laboratory, United States
  4. Freie Universität Berlin, Germany

Abstract

In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn4CaO5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn4CaO5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

Article and author information

Author details

  1. Miao Zhang

    Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin Bommer

    Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruchira Chatterjee

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rana Hussein

    Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Junko Yano

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Holger Dau

    Freie Universität Berlin, Berlin, Germany
    For correspondence
    holger.dau@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Kern

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    For correspondence
    jfkern@lbl.gov
    Competing interests
    The authors declare that no competing interests exist.
  8. Holger Dobbek

    Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4122-3898
  9. Athina Zouni

    Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    athina.zouni@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0561-6990

Funding

Human Frontier Science Program (Project Award No. RGP0063/2013 310)

  • Rana Hussein

Human Frontier Science Program (Project Award No. RGP0063/2013 310)

  • Junko Yano

Human Frontier Science Program (Project Award No. RGP0063/2013 310)

  • Athina Zouni

National Institutes of Health (GM055302)

  • Ruchira Chatterjee
  • Jan Kern

Deutsche Forschungsgemeinschaft Unifying Concepts in Catalysis (Project E3)

  • Miao Zhang
  • Holger Dau
  • Holger Dobbek

Deutsche Forschungsgemeinschaft Sonderforschungsbereich 1078 (Project A5)

  • Holger Dau
  • Holger Dobbek
  • Athina Zouni

Deutsche Forschungsgemeinschaft Sonderforschungbereich 1078 (Project A4)

  • Martin Bommer

Biosciences of the Department of Energy (Contact number: DE-AC02-05CH11231)

  • Junko Yano
  • Jan Kern

Only Human Frontier Science Program (HFSP) can be found in the funder list .The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul G Falkowski, Rutgers University, United States

Version history

  1. Received: March 17, 2017
  2. Accepted: July 17, 2017
  3. Accepted Manuscript published: July 18, 2017 (version 1)
  4. Version of Record published: August 3, 2017 (version 2)

Copyright

© 2017, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,796
    views
  • 515
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miao Zhang
  2. Martin Bommer
  3. Ruchira Chatterjee
  4. Rana Hussein
  5. Junko Yano
  6. Holger Dau
  7. Jan Kern
  8. Holger Dobbek
  9. Athina Zouni
(2017)
Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II
eLife 6:e26933.
https://doi.org/10.7554/eLife.26933

Share this article

https://doi.org/10.7554/eLife.26933

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.