Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts

  1. Mark Paul Petronczki  Is a corresponding author
  2. Petra van der Lelij
  3. Simone Lieb
  4. Julian Jude
  5. Gordana Wutz
  6. Catarina P Santos
  7. Katrina Falkenberg
  8. Andreas Schlattl
  9. Jozef Ban
  10. Raphaela Schwentner
  11. Thomas Hoffmann
  12. Heinrich Kovar
  13. Francisco X Real
  14. Todd Waldman
  15. Mark A Pearson
  16. Norbert Kraut
  17. Jan-Michael Peters
  18. Johannes Zuber
  1. Boehringer Ingelheim RCV, Austria
  2. Research Institute of Molecular Pathology, Austria
  3. Research Institute of Molecular Pathology, Austria
  4. Spanish National Cancer Research Centre, Spain
  5. Children's Cancer Research Institute, Austria
  6. Georgetown University School of Medicine, United States

Abstract

Recent genome analyses have identified recurrent mutations in the cohesin complex in a wide range of human cancers. Here we demonstrate that the most frequently mutated subunit of the cohesin complex, STAG2, displays a strong synthetic lethal interaction with its paralog STAG1. Mechanistically, STAG1 loss abrogates sister chromatid cohesion in STAG2 mutated but not in wild-type cells leading to mitotic catastrophe, defective cell division and apoptosis. STAG1 inactivation inhibits the proliferation of STAG2 mutated but not wild-type bladder cancer and Ewing sarcoma cell lines. Restoration of STAG2 expression in a mutated bladder cancer model alleviates the dependency on STAG1. Thus, STAG1 and STAG2 support sister chromatid cohesion to redundantly ensure cell survival. STAG1 represents a vulnerability of cancer cells carrying mutations in the major emerging tumor suppressor STAG2 across different cancer contexts. Exploiting synthetic lethal interactions to target recurrent cohesin mutations in cancer, e.g. by inhibiting STAG1, holds the promise for the development of selective therapeutics.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Mark Paul Petronczki

    Boehringer Ingelheim RCV, Vienna, Austria
    For correspondence
    mark_paul.petronczki@boehringer-ingelheim.com
    Competing interests
    Mark Paul Petronczki, Mark Petronczki is a full-time employee of Boehringer Ingelheim RCV..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0139-5692
  2. Petra van der Lelij

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Simone Lieb

    Boehringer Ingelheim RCV, Vienna, Austria
    Competing interests
    Simone Lieb, Simone Lieb is a full-time employee of Boehringer Ingelheim RCV..
  4. Julian Jude

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9091-9867
  5. Gordana Wutz

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Catarina P Santos

    Spanish National Cancer Research Centre, Madrid, Spain
    Competing interests
    No competing interests declared.
  7. Katrina Falkenberg

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Andreas Schlattl

    Boehringer Ingelheim RCV, Vienna, Austria
    Competing interests
    Andreas Schlattl, Andreas Schlattl is a full-time employee of Boehringer Ingelheim RCV..
  9. Jozef Ban

    Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    No competing interests declared.
  10. Raphaela Schwentner

    Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6839-0322
  11. Thomas Hoffmann

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  12. Heinrich Kovar

    Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    No competing interests declared.
  13. Francisco X Real

    Spanish National Cancer Research Centre, Madrid, Spain
    Competing interests
    No competing interests declared.
  14. Todd Waldman

    Lombardi Comprehensive Cancer center, Georgetown University School of Medicine, Washington, United States
    Competing interests
    No competing interests declared.
  15. Mark A Pearson

    Boehringer Ingelheim RCV, Vienna, Austria
    Competing interests
    Mark A Pearson, Mark Pearson is a full-time employee of Boehringer Ingelheim RCV..
  16. Norbert Kraut

    Boehringer Ingelheim RCV, Vienna, Austria
    Competing interests
    Norbert Kraut, Norbert Kraut is a full-time employee of Boehringer Ingelheim RCV..
  17. Jan-Michael Peters

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
  18. Johannes Zuber

    Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8810-6835

Funding

Austrian Science Fund (SFB-F34)

  • Jan-Michael Peters

National Institutes of Health (R01CA169345)

  • Todd Waldman

Innovation Grant from Alex's Lemonade Stand

  • Todd Waldman

Boehringer Ingelheim RCV

  • Mark Paul Petronczki
  • Simone Lieb
  • Andreas Schlattl
  • Mark A Pearson
  • Norbert Kraut

Austrian Science Fund (Wittgenstein award Z196-B20)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-834223)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-852936)

  • Jan-Michael Peters

Austrian Research Promotion Agency (FFG-840283)

  • Jan-Michael Peters

European Research Council (ERC no. 336860)

  • Johannes Zuber

Austrian Science Fund (SFB grant F4710)

  • Johannes Zuber

Austrian Science Fund (ERA-Net grant I 1225-B19)

  • Heinrich Kovar

Fundación Científica Asociación Española Contra el Cancer

  • Francisco X Real

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Petronczki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,129
    views
  • 1,187
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Paul Petronczki
  2. Petra van der Lelij
  3. Simone Lieb
  4. Julian Jude
  5. Gordana Wutz
  6. Catarina P Santos
  7. Katrina Falkenberg
  8. Andreas Schlattl
  9. Jozef Ban
  10. Raphaela Schwentner
  11. Thomas Hoffmann
  12. Heinrich Kovar
  13. Francisco X Real
  14. Todd Waldman
  15. Mark A Pearson
  16. Norbert Kraut
  17. Jan-Michael Peters
  18. Johannes Zuber
(2017)
Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts
eLife 6:e26980.
https://doi.org/10.7554/eLife.26980

Share this article

https://doi.org/10.7554/eLife.26980

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.