Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgada
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang  Is a corresponding author
  13. Jianfeng Liu
  14. Jean-Philippe Pin  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. CNRS, INSERM, Univ. Montpellier, France
  3. Universitat Autònoma de Barcelona (UAB), Spain
  4. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spain
  5. Universitat Autònoma de Barcelona (UAB), Spain

Abstract

GPCRs play critical roles in cell communication. Although GPCRs can form heteromers, their role in signaling remains elusive. Here we used rat metabotropic glutamate (mGlu) receptors as prototypical dimers to study the functional interaction between each subunit. mGluRs can form both constitutive homo- and heterodimers. Whereas both mGlu2 and mGlu4 couple to G proteins, G protein activation is mediated by mGlu4 heptahelical domain (HD) exclusively in mGlu2-4 heterodimers. Such asymmetric transduction results from the action of both the dimeric extracellular domain, and an allosteric activation by the partially-activated non-functional mGlu2 HD. G proteins activation by mGlu2 HD occurs if either the mGlu2 HD is occupied by a positive allosteric modulator or if mGlu4 HD is inhibited by a negative modulator. These data revealed an oriented asymmetry in mGlu heterodimers that can be controlled with allosteric modulators. They provide new insight on the allosteric interaction between subunits in a GPCR dimer.

Article and author information

Author details

  1. Junke Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zongyong Zhang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. David Moreno-Delgada

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. James Dalton

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5279-4581
  5. Xavier Rovira

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9764-9927
  6. Ana Trapero

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Cyril Goudet

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8255-3535
  8. Amadeu Llebaria

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8200-4827
  9. Jesús Giraldo

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-4695
  10. Qilin Yuan

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Philippe Rondard

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738
  12. Siluo Huang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    slhuang@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Jianfeng Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377
  14. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    For correspondence
    jppin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1423-345X

Funding

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

National Natural Science Foundation of China (31100548)

  • Siluo Huang

The program of introducing talents of discipline to the university of the ministry of education of China (B08029)

  • Jianfeng Liu

Mérieux research grants program

  • Jianfeng Liu

Centre National de la Recherche Scientifique

  • Jean-Philippe Pin

Institut National de la Santé et de la Recherche Médicale

  • Jean-Philippe Pin

Fondation pour la Recherche Médicale (DEQ20130326522)

  • Jean-Philippe Pin

National Natural Science Foundation of China (31711530146)

  • Jianfeng Liu

National Natural Science Foundation of China (31511130131)

  • Jianfeng Liu

Natural Science Foundation of Hubei Province (2014CFA010)

  • Junke Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,126
    views
  • 649
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgada
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang
  13. Jianfeng Liu
  14. Jean-Philippe Pin
(2017)
Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer
eLife 6:e26985.
https://doi.org/10.7554/eLife.26985

Share this article

https://doi.org/10.7554/eLife.26985

Further reading

    1. Cell Biology
    2. Neuroscience
    Victor C Wong, Patrick R Houlihan ... Erin K O'Shea
    Research Article

    AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.