Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgado
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang  Is a corresponding author
  13. Jianfeng Liu  Is a corresponding author
  14. Jean-Philippe Pin  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. CNRS, INSERM, Univ. Montpellier, France
  3. Universitat Autònoma de Barcelona (UAB), Spain
  4. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spain
  5. Universitat Autònoma de Barcelona (UAB), Spain

Abstract

GPCRs play critical roles in cell communication. Although GPCRs can form heteromers, their role in signaling remains elusive. Here we used rat metabotropic glutamate (mGlu) receptors as prototypical dimers to study the functional interaction between each subunit. mGluRs can form both constitutive homo- and heterodimers. Whereas both mGlu2 and mGlu4 couple to G proteins, G protein activation is mediated by mGlu4 heptahelical domain (HD) exclusively in mGlu2-4 heterodimers. Such asymmetric transduction results from the action of both the dimeric extracellular domain, and an allosteric activation by the partially-activated non-functional mGlu2 HD. G proteins activation by mGlu2 HD occurs if either the mGlu2 HD is occupied by a positive allosteric modulator or if mGlu4 HD is inhibited by a negative modulator. These data revealed an oriented asymmetry in mGlu heterodimers that can be controlled with allosteric modulators. They provide new insight on the allosteric interaction between subunits in a GPCR dimer.

Article and author information

Author details

  1. Junke Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zongyong Zhang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. David Moreno-Delgado

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. James Dalton

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5279-4581
  5. Xavier Rovira

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9764-9927
  6. Ana Trapero

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Cyril Goudet

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8255-3535
  8. Amadeu Llebaria

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8200-4827
  9. Jesús Giraldo

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-4695
  10. Qilin Yuan

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Philippe Rondard

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738
  12. Siluo Huang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    slhuang@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Jianfeng Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    jfliu@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377
  14. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    For correspondence
    jppin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1423-345X

Funding

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

National Natural Science Foundation of China (31100548)

  • Siluo Huang

The program of introducing talents of discipline to the university of the ministry of education of China (B08029)

  • Jianfeng Liu

Mérieux research grants program

  • Jianfeng Liu

Centre National de la Recherche Scientifique

  • Jean-Philippe Pin

Institut National de la Santé et de la Recherche Médicale

  • Jean-Philippe Pin

Fondation pour la Recherche Médicale (DEQ20130326522)

  • Jean-Philippe Pin

National Natural Science Foundation of China (31711530146)

  • Jianfeng Liu

National Natural Science Foundation of China (31511130131)

  • Jianfeng Liu

Natural Science Foundation of Hubei Province (2014CFA010)

  • Junke Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,237
    views
  • 660
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgado
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang
  13. Jianfeng Liu
  14. Jean-Philippe Pin
(2017)
Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer
eLife 6:e26985.
https://doi.org/10.7554/eLife.26985

Share this article

https://doi.org/10.7554/eLife.26985

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.