Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgado
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang  Is a corresponding author
  13. Jianfeng Liu
  14. Jean-Philippe Pin  Is a corresponding author
  1. Huazhong University of Science and Technology, China
  2. CNRS, INSERM, Univ. Montpellier, France
  3. Universitat Autònoma de Barcelona (UAB), Spain
  4. Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spain
  5. Universitat Autònoma de Barcelona (UAB), Spain

Abstract

GPCRs play critical roles in cell communication. Although GPCRs can form heteromers, their role in signaling remains elusive. Here we used rat metabotropic glutamate (mGlu) receptors as prototypical dimers to study the functional interaction between each subunit. mGluRs can form both constitutive homo- and heterodimers. Whereas both mGlu2 and mGlu4 couple to G proteins, G protein activation is mediated by mGlu4 heptahelical domain (HD) exclusively in mGlu2-4 heterodimers. Such asymmetric transduction results from the action of both the dimeric extracellular domain, and an allosteric activation by the partially-activated non-functional mGlu2 HD. G proteins activation by mGlu2 HD occurs if either the mGlu2 HD is occupied by a positive allosteric modulator or if mGlu4 HD is inhibited by a negative modulator. These data revealed an oriented asymmetry in mGlu heterodimers that can be controlled with allosteric modulators. They provide new insight on the allosteric interaction between subunits in a GPCR dimer.

Article and author information

Author details

  1. Junke Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zongyong Zhang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. David Moreno-Delgado

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. James Dalton

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5279-4581
  5. Xavier Rovira

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9764-9927
  6. Ana Trapero

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Cyril Goudet

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8255-3535
  8. Amadeu Llebaria

    MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8200-4827
  9. Jesús Giraldo

    Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-4695
  10. Qilin Yuan

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Philippe Rondard

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2738
  12. Siluo Huang

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    For correspondence
    slhuang@mail.hust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Jianfeng Liu

    Sino-France Laboratory of Cellular Signaling, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0284-8377
  14. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
    For correspondence
    jppin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1423-345X

Funding

National Natural Science Foundation of China (31420103909)

  • Jianfeng Liu

National Natural Science Foundation of China (31100548)

  • Siluo Huang

The program of introducing talents of discipline to the university of the ministry of education of China (B08029)

  • Jianfeng Liu

Mérieux research grants program

  • Jianfeng Liu

Centre National de la Recherche Scientifique

  • Jean-Philippe Pin

Institut National de la Santé et de la Recherche Médicale

  • Jean-Philippe Pin

Fondation pour la Recherche Médicale (DEQ20130326522)

  • Jean-Philippe Pin

National Natural Science Foundation of China (31711530146)

  • Jianfeng Liu

National Natural Science Foundation of China (31511130131)

  • Jianfeng Liu

Natural Science Foundation of Hubei Province (2014CFA010)

  • Junke Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,241
    views
  • 661
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junke Liu
  2. Zongyong Zhang
  3. David Moreno-Delgado
  4. James Dalton
  5. Xavier Rovira
  6. Ana Trapero
  7. Cyril Goudet
  8. Amadeu Llebaria
  9. Jesús Giraldo
  10. Qilin Yuan
  11. Philippe Rondard
  12. Siluo Huang
  13. Jianfeng Liu
  14. Jean-Philippe Pin
(2017)
Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer
eLife 6:e26985.
https://doi.org/10.7554/eLife.26985

Share this article

https://doi.org/10.7554/eLife.26985

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.