1. Genetics and Genomics
Download icon

Genetic variation in adaptability and pleiotropy in budding yeast

  1. Elizabeth R Jerison
  2. Sergey Kryazhimskiy
  3. James Kameron Mitchell
  4. Joshua S Bloom
  5. Leonid Kruglyak
  6. Michael M Desai  Is a corresponding author
  1. Harvard University, United States
  2. University of California, San Diego, United States
  3. University of California, Los Angeles, United States
Research Article
  • Cited 26
  • Views 2,816
  • Annotations
Cite this article as: eLife 2017;6:e27167 doi: 10.7554/eLife.27167

Abstract

Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Elizabeth R Jerison

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Sergey Kryazhimskiy

    Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. James Kameron Mitchell

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Joshua S Bloom

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Leonid Kruglyak

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Leonid Kruglyak, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8065-3057
  6. Michael M Desai

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    mdesai@oeb.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150

Funding

National Institutes of Health (R01GM102308)

  • Leonid Kruglyak

Simons Foundation (376196)

  • Michael M Desai

National Science Foundation (PHY 1313638)

  • Michael M Desai

Howard Hughes Medical Institute (Investigator)

  • Leonid Kruglyak

National Institutes of Health (R01GM104239)

  • Michael M Desai

National Science Foundation (Graduate Research Fellowship)

  • Elizabeth R Jerison

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Sergey Kryazhimskiy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Publication history

  1. Received: March 27, 2017
  2. Accepted: August 14, 2017
  3. Accepted Manuscript published: August 17, 2017 (version 1)
  4. Version of Record published: September 1, 2017 (version 2)

Copyright

© 2017, Jerison et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,816
    Page views
  • 457
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Tarik Seref Onur et al.
    Research Article

    Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington's disease (HD), we profiled the gene expression alterations of Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high-throughput behavioral assay and found that downregulation of genes involved in synapse assembly mitigated pathogenesis and behavioral deficits. To our surprise, reducing dNRXN3 function in glia was sufficient to improve the phenotype of flies expressing mHTT in neurons, suggesting that mHTT's toxic effects in glia ramify throughout the brain. This supports a model in which dampening synaptic function is protective because it attenuates the excitotoxicity that characterizes HD.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Thomas J Etheridge et al.
    Research Article

    The essential Smc5/6 complex is required in response to replication stress and is best known for ensuring the fidelity of homologous recombination. Using single-molecule tracking in live fission yeast to investigate Smc5/6 chromatin association, we show that Smc5/6 is chromatin associated in unchallenged cells and this depends on the non-SMC protein Nse6. We define a minimum of two Nse6-dependent sub-pathways, one of which requires the BRCT-domain protein Brc1. Using defined mutants in genes encoding the core Smc5/6 complex subunits we show that the Nse3 double-stranded DNA binding activity and the arginine fingers of the two Smc5/6 ATPase binding sites are critical for chromatin association. Interestingly, disrupting the ssDNA binding activity at the hinge region does not prevent chromatin association but leads to elevated levels of gross chromosomal rearrangements during replication restart. This is consistent with a downstream function for ssDNA binding in regulating homologous recombination.