Mechanism of environmentally driven conformational changes that modulate H-NS DNA bridging activity

  1. Ramon A van der Valk
  2. Jocelyne Vreede
  3. Liang Qin
  4. Geri F Moolenaar
  5. Andreas Hofmann
  6. Nora Goosen
  7. Remus T Dame  Is a corresponding author
  1. Leiden University, Netherlands
  2. University of Amsterdam, Netherlands
  3. University of Heidelberg, Germany

Abstract

Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H‑NS is a key global regulator in Gram-negative bacteria, and is believed to be a crucial player in bacterial chromatin organization via its DNA bridging activity. H‑NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners. Mechanistically it is unclear how functional modulation of H-NS by such factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt switch between a bridging and non-bridging DNA binding mode. Similarly, synergistic and antagonistic co-regulators modulate the DNA bridging efficiency. Structural studies suggest a conserved mechanism: H-NS switches between a "closed" and an "open", bridging competent, conformation driven by environmental cues and interaction partners.

Article and author information

Author details

  1. Ramon A van der Valk

    Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Jocelyne Vreede

    Computational Chemistry, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Qin

    Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Geri F Moolenaar

    Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas Hofmann

    Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nora Goosen

    Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Remus T Dame

    Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
    For correspondence
    rtdame@chem.leidenuniv.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9863-1692

Funding

NanonextNL of the Government of the Netherland and 130 partners

  • Ramon A van der Valk
  • Geri F Moolenaar
  • Remus T Dame

Netherlands Organisation for Scientific Research (VIDI 864.08.001)

  • Ramon A van der Valk
  • Geri F Moolenaar
  • Nora Goosen
  • Remus T Dame

Netherlands Organisation for Scientific Research (Athena grant 700.58.802)

  • Jocelyne Vreede

Human Frontier Science Program (RGP0014/2014)

  • Andreas Hofmann
  • Remus T Dame

China Scholarship Council (No. 201506880001)

  • Liang Qin

Netherlands Organisation for Scientific Research (VICI 016.160.613)

  • Remus T Dame

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: April 3, 2017
  2. Accepted: September 25, 2017
  3. Accepted Manuscript published: September 26, 2017 (version 1)
  4. Version of Record published: October 18, 2017 (version 2)

Copyright

© 2017, van der Valk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,075
    Page views
  • 406
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramon A van der Valk
  2. Jocelyne Vreede
  3. Liang Qin
  4. Geri F Moolenaar
  5. Andreas Hofmann
  6. Nora Goosen
  7. Remus T Dame
(2017)
Mechanism of environmentally driven conformational changes that modulate H-NS DNA bridging activity
eLife 6:e27369.
https://doi.org/10.7554/eLife.27369

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Claudia C Carcamo et al.
    Research Article Updated

    One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.

    1. Structural Biology and Molecular Biophysics
    Marina Schrecker et al.
    Research Article

    The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3’ end (3’ ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3’ ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.