Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo

  1. Matthew L Schwartz
  2. Daniel P Nickerson
  3. Braden T Lobingier
  4. Rachael L Plemel
  5. Mengtong Duan
  6. Cortney G Angers
  7. Michael Zick
  8. Alexey J Merz  Is a corresponding author
  1. University of Washington School of Medicine, United States
  2. California State University, United States
  3. Geisel School of Medicine at Dartmouth, United States

Abstract

Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.

Article and author information

Author details

  1. Matthew L Schwartz

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel P Nickerson

    Department of Biology, California State University, San Bernardino, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Braden T Lobingier

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachael L Plemel

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengtong Duan

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cortney G Angers

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Zick

    Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexey J Merz

    Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
    For correspondence
    merza@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2177-6492

Funding

National Institute of General Medical Sciences (GM077349)

  • Alexey J Merz

National Institute of General Medical Sciences (T32 GM07270)

  • Matthew L Schwartz
  • Braden T Lobingier
  • Cortney G Angers

National Institute of General Medical Sciences (GM023377)

  • Michael Zick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University Medical Center, United States

Publication history

  1. Received: April 1, 2017
  2. Accepted: September 15, 2017
  3. Accepted Manuscript published: September 19, 2017 (version 1)
  4. Version of Record published: October 16, 2017 (version 2)

Copyright

© 2017, Schwartz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,749
    Page views
  • 373
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew L Schwartz
  2. Daniel P Nickerson
  3. Braden T Lobingier
  4. Rachael L Plemel
  5. Mengtong Duan
  6. Cortney G Angers
  7. Michael Zick
  8. Alexey J Merz
(2017)
Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo
eLife 6:e27396.
https://doi.org/10.7554/eLife.27396

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Edmundo G Vides, Ayan Adhikari ... Suzanne R Pfeffer
    Research Advance

    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'Site #1', can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'Site #2', that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Andrea Volante, Juan Carlos Alonso, Kiyoshi Mizuuchi
    Research Article Updated

    Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS-DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParBpSM of the ribbon-helix-helix (RHH) family. We show that parSpSM with four or more contiguous ParBpSM-binding sequence repeats is required to assemble a stable ParApSM-ParBpSM complex and efficiently activate the ParApSM-ATPase, stimulating complex disassembly. Disruption of the contiguity of the parSpSM sequence array destabilizes the ParApSM-ParBpSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParApSM-ATP.