Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude

  1. Anush Bakunts
  2. Andrea Orsi
  3. Milena Vitale
  4. Angela Cattaneo
  5. Federica Lari
  6. Laura Tadè
  7. Roberto Sitia
  8. Andrea Raimondi
  9. Angela Bachi
  10. Eelco van Anken  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. FIRC Institute of Molecular Oncology, Italy

Abstract

Insufficient folding capacity of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to restore homeostasis. Yet, how the UPR achieves ER homeostatic readjustment is poorly investigated, since in most studies the ER-stress that is elicited cannot be overcome. Here we show that a proteostatic insult, achieved by persistent expression of the secretory heavy chain of immunoglobulin M (µs), is well-tolerated in HeLa cells. Upon µs expression, its levels temporarily eclipse those of the ER-chaperone BiP, leading to acute, full-geared UPR activation. Once BiP is in excess again, the UPR transitions to chronic, submaximal activation, indicating that the UPR senses ER-stress in a ratiometric fashion. In the process the ER expands about threefold and becomes dominated by BiP. Since the UPR is essential for successful ER homeostatic readjustment in the HeLa-µs model, it provides an ideal system for dissecting the intricacies of how the UPR evaluates and alleviates ER-stress.

Article and author information

Author details

  1. Anush Bakunts

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Orsi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2839-1640
  3. Milena Vitale

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7007-402X
  4. Angela Cattaneo

    FIRC Institute of Molecular Oncology, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Federica Lari

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Tadè

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Roberto Sitia

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7086-4152
  8. Andrea Raimondi

    Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Angela Bachi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Eelco van Anken

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    evananken@mac.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9529-2701

Funding

Giovanni Armenise-Harvard Foundation

  • Eelco van Anken

Ministero della Salute (RF - 2011-02352852)

  • Eelco van Anken

Associazione Italiana per la Ricerca sul Cancro (MFAG 13584)

  • Eelco van Anken

Ministero della Salute (PE-2011-02352286)

  • Roberto Sitia
  • Eelco van Anken

Associazione Italiana per la Ricerca sul Cancro (IG 2016-18824)

  • Roberto Sitia

Fondazione Telethon (GGP15059)

  • Roberto Sitia

Fondazione Cariplo (2015-0591)

  • Roberto Sitia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Bakunts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,614
    views
  • 769
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anush Bakunts
  2. Andrea Orsi
  3. Milena Vitale
  4. Angela Cattaneo
  5. Federica Lari
  6. Laura Tadè
  7. Roberto Sitia
  8. Andrea Raimondi
  9. Angela Bachi
  10. Eelco van Anken
(2017)
Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude
eLife 6:e27518.
https://doi.org/10.7554/eLife.27518

Share this article

https://doi.org/10.7554/eLife.27518

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.