Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude

  1. Anush Bakunts
  2. Andrea Orsi
  3. Milena Vitale
  4. Angela Cattaneo
  5. Federica Lari
  6. Laura Tadè
  7. Roberto Sitia
  8. Andrea Raimondi
  9. Angela Bachi
  10. Eelco van Anken  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. FIRC Institute of Molecular Oncology, Italy

Abstract

Insufficient folding capacity of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to restore homeostasis. Yet, how the UPR achieves ER homeostatic readjustment is poorly investigated, since in most studies the ER-stress that is elicited cannot be overcome. Here we show that a proteostatic insult, achieved by persistent expression of the secretory heavy chain of immunoglobulin M (µs), is well-tolerated in HeLa cells. Upon µs expression, its levels temporarily eclipse those of the ER-chaperone BiP, leading to acute, full-geared UPR activation. Once BiP is in excess again, the UPR transitions to chronic, submaximal activation, indicating that the UPR senses ER-stress in a ratiometric fashion. In the process the ER expands about threefold and becomes dominated by BiP. Since the UPR is essential for successful ER homeostatic readjustment in the HeLa-µs model, it provides an ideal system for dissecting the intricacies of how the UPR evaluates and alleviates ER-stress.

Article and author information

Author details

  1. Anush Bakunts

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Orsi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2839-1640
  3. Milena Vitale

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7007-402X
  4. Angela Cattaneo

    FIRC Institute of Molecular Oncology, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Federica Lari

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Tadè

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Roberto Sitia

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7086-4152
  8. Andrea Raimondi

    Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Angela Bachi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Eelco van Anken

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    evananken@mac.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9529-2701

Funding

Giovanni Armenise-Harvard Foundation

  • Eelco van Anken

Ministero della Salute (RF - 2011-02352852)

  • Eelco van Anken

Associazione Italiana per la Ricerca sul Cancro (MFAG 13584)

  • Eelco van Anken

Ministero della Salute (PE-2011-02352286)

  • Roberto Sitia
  • Eelco van Anken

Associazione Italiana per la Ricerca sul Cancro (IG 2016-18824)

  • Roberto Sitia

Fondazione Telethon (GGP15059)

  • Roberto Sitia

Fondazione Cariplo (2015-0591)

  • Roberto Sitia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Bakunts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,674
    views
  • 779
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anush Bakunts
  2. Andrea Orsi
  3. Milena Vitale
  4. Angela Cattaneo
  5. Federica Lari
  6. Laura Tadè
  7. Roberto Sitia
  8. Andrea Raimondi
  9. Angela Bachi
  10. Eelco van Anken
(2017)
Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude
eLife 6:e27518.
https://doi.org/10.7554/eLife.27518

Share this article

https://doi.org/10.7554/eLife.27518

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.