Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1

  1. Antonio Galeone
  2. Seung Yeop Han
  3. Chengcheng Huang
  4. Akira Hosomi
  5. Tadashi Suzuki
  6. Hamed Jafar-Nejad  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. RIKEN Global Research Cluster, Japan

Abstract

Mutations in the human N-glycanase 1 (NGLY1) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N-glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N-glycanase enzyme.

Article and author information

Author details

  1. Antonio Galeone

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seung Yeop Han

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chengcheng Huang

    Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Akira Hosomi

    Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tadashi Suzuki

    Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hamed Jafar-Nejad

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hamedj@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6403-3379

Funding

Grace Wilsey Foundation (Research Grant)

  • Tadashi Suzuki
  • Hamed Jafar-Nejad

National Institutes of Health (R01GM084135 R01DK109982)

  • Hamed Jafar-Nejad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Galeone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,503
    views
  • 461
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Galeone
  2. Seung Yeop Han
  3. Chengcheng Huang
  4. Akira Hosomi
  5. Tadashi Suzuki
  6. Hamed Jafar-Nejad
(2017)
Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1
eLife 6:e27612.
https://doi.org/10.7554/eLife.27612

Share this article

https://doi.org/10.7554/eLife.27612

Further reading

    1. Developmental Biology
    Liping Zhang, Kelly G Ten Hagen
    Insight

    Mutations in an enzyme involved in protein degradation affect a signaling pathway that stimulates the development of the digestive tract.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.