Electrical activity controls area-specific expression of neuronal apoptosis in the developing mouse cerebral cortex

  1. Oriane Blanquie
  2. Jenq-Wei Yang  Is a corresponding author
  3. Werner Kilb  Is a corresponding author
  4. Salim Sharopov  Is a corresponding author
  5. Anne Sinning  Is a corresponding author
  6. Heiko J Luhmann  Is a corresponding author
  1. University Medical Center of the Johannes Gutenberg University Mainz, Germany

Abstract

Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.

Article and author information

Author details

  1. Oriane Blanquie

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jenq-Wei Yang

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    yangj@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Werner Kilb

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    wkilb@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
  4. Salim Sharopov

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    shsalim@mail.ru
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Sinning

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    asinning@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
  6. Heiko J Luhmann

    Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    luhmann@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7934-8661

Funding

German Research Foundation (Collaborative Research Center 1080)

  • Anne Sinning
  • Heiko J Luhmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with National and European (86/609/EEC) laws for the use of animals in research and were approved by the local ethical committee (Landesuntersuchungsamt Rheinland-Pfalz 23.177-07/G 10-1-010).

Copyright

© 2017, Blanquie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,665
    views
  • 571
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oriane Blanquie
  2. Jenq-Wei Yang
  3. Werner Kilb
  4. Salim Sharopov
  5. Anne Sinning
  6. Heiko J Luhmann
(2017)
Electrical activity controls area-specific expression of neuronal apoptosis in the developing mouse cerebral cortex
eLife 6:e27696.
https://doi.org/10.7554/eLife.27696

Share this article

https://doi.org/10.7554/eLife.27696

Further reading

    1. Developmental Biology
    2. Neuroscience
    Pengfei Liu, Xinyi Liu, Bin Qi
    Research Article

    To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 respectively, were differentially regulated. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.