Abstract

Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sondos Samandi

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Annie V Roy

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivian Delcourt

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-François Lucier

    Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jules Gagnon

    Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Maxime C Beaudoin

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Benoît Vanderperre

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Marc-André Breton

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Julie Motard

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-François Jacques

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0465-0313
  11. Mylène Brunelle

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Isabelle Gagnon-Arsenault

    Département de biologie, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Isabelle Fournier

    Prism INSERM U1192, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1096-5044
  14. Aïda Ouangraoua

    Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Darel J Hunting

    Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Alan A Cohen

    Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Christian R Landry

    Département de biologie, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  18. Michelle S Scott

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  19. Xavier Roucou

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    xavier.roucou@usherbrooke.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9370-5584

Funding

Canadian Institutes of Health Research (MOP-137056)

  • Xavier Roucou

Canada Research Chairs

  • Aïda Ouangraoua
  • Christian R Landry
  • Xavier Roucou

Fonds de Recherche du Québec - Nature et Technologies (2015-PR-181807)

  • Christian R Landry
  • Xavier Roucou

Merck Sharp and Dohme

  • Xavier Roucou

Canadian Institutes of Health Research (MOP-136962)

  • Xavier Roucou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Samandi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,898
    views
  • 1,013
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sondos Samandi
  2. Annie V Roy
  3. Vivian Delcourt
  4. Jean-François Lucier
  5. Jules Gagnon
  6. Maxime C Beaudoin
  7. Benoît Vanderperre
  8. Marc-André Breton
  9. Julie Motard
  10. Jean-François Jacques
  11. Mylène Brunelle
  12. Isabelle Gagnon-Arsenault
  13. Isabelle Fournier
  14. Aïda Ouangraoua
  15. Darel J Hunting
  16. Alan A Cohen
  17. Christian R Landry
  18. Michelle S Scott
  19. Xavier Roucou
(2017)
Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins
eLife 6:e27860.
https://doi.org/10.7554/eLife.27860

Share this article

https://doi.org/10.7554/eLife.27860

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.