Abstract

Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sondos Samandi

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Annie V Roy

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivian Delcourt

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-François Lucier

    Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jules Gagnon

    Department of Biology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Maxime C Beaudoin

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Benoît Vanderperre

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Marc-André Breton

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Julie Motard

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-François Jacques

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0465-0313
  11. Mylène Brunelle

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Isabelle Gagnon-Arsenault

    Département de biologie, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Isabelle Fournier

    Prism INSERM U1192, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1096-5044
  14. Aïda Ouangraoua

    Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Darel J Hunting

    Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Alan A Cohen

    Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Christian R Landry

    Département de biologie, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  18. Michelle S Scott

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    The authors declare that no competing interests exist.
  19. Xavier Roucou

    Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    xavier.roucou@usherbrooke.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9370-5584

Funding

Canadian Institutes of Health Research (MOP-137056)

  • Xavier Roucou

Canada Research Chairs

  • Aïda Ouangraoua
  • Christian R Landry
  • Xavier Roucou

Fonds de Recherche du Québec - Nature et Technologies (2015-PR-181807)

  • Christian R Landry
  • Xavier Roucou

Merck Sharp and Dohme

  • Xavier Roucou

Canadian Institutes of Health Research (MOP-136962)

  • Xavier Roucou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: April 17, 2017
  2. Accepted: October 29, 2017
  3. Accepted Manuscript published: October 30, 2017 (version 1)
  4. Version of Record published: November 27, 2017 (version 2)

Copyright

© 2017, Samandi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,713
    views
  • 1,000
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sondos Samandi
  2. Annie V Roy
  3. Vivian Delcourt
  4. Jean-François Lucier
  5. Jules Gagnon
  6. Maxime C Beaudoin
  7. Benoît Vanderperre
  8. Marc-André Breton
  9. Julie Motard
  10. Jean-François Jacques
  11. Mylène Brunelle
  12. Isabelle Gagnon-Arsenault
  13. Isabelle Fournier
  14. Aïda Ouangraoua
  15. Darel J Hunting
  16. Alan A Cohen
  17. Christian R Landry
  18. Michelle S Scott
  19. Xavier Roucou
(2017)
Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins
eLife 6:e27860.
https://doi.org/10.7554/eLife.27860

Share this article

https://doi.org/10.7554/eLife.27860

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.