Affective bias as a rational response to the statistics of rewards and punishments

  1. Erdem Pulcu
  2. Michael Browning  Is a corresponding author
  1. University of Oxford, United Kingdom

Abstract

Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals' estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development.

Article and author information

Author details

  1. Erdem Pulcu

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Michael Browning

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    For correspondence
    michael.browning@psych.ox.ac.uk
    Competing interests
    Michael Browning, has received travel expenses from Lundbeck for attending conferences..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-3144

Funding

Medical Research Council (MR/N008103/1)

  • Michael Browning

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. The study was reviewed and approved by the Medical Sciences Interdepartmental Research Ethics Committee of Oxford University (ref number MSD-IDREC-C1-2014-216).

Copyright

© 2017, Pulcu & Browning

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,843
    views
  • 638
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erdem Pulcu
  2. Michael Browning
(2017)
Affective bias as a rational response to the statistics of rewards and punishments
eLife 6:e27879.
https://doi.org/10.7554/eLife.27879

Share this article

https://doi.org/10.7554/eLife.27879

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.