Affective bias as a rational response to the statistics of rewards and punishments

  1. Erdem Pulcu
  2. Michael Browning  Is a corresponding author
  1. University of Oxford, United Kingdom

Abstract

Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals' estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development.

Article and author information

Author details

  1. Erdem Pulcu

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Michael Browning

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    For correspondence
    michael.browning@psych.ox.ac.uk
    Competing interests
    Michael Browning, has received travel expenses from Lundbeck for attending conferences..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-3144

Funding

Medical Research Council (MR/N008103/1)

  • Michael Browning

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. The study was reviewed and approved by the Medical Sciences Interdepartmental Research Ethics Committee of Oxford University (ref number MSD-IDREC-C1-2014-216).

Copyright

© 2017, Pulcu & Browning

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,869
    views
  • 640
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erdem Pulcu
  2. Michael Browning
(2017)
Affective bias as a rational response to the statistics of rewards and punishments
eLife 6:e27879.
https://doi.org/10.7554/eLife.27879

Share this article

https://doi.org/10.7554/eLife.27879

Further reading

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.