1. Biochemistry and Chemical Biology
  2. Chromosomes and Gene Expression
Download icon

In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing

  1. Beatriz A Osuna
  2. Conor J Howard
  3. Subheksha KC
  4. Adam Frost  Is a corresponding author
  5. David E Weinberg  Is a corresponding author
  1. University of California, San Francisco, United States
Research Article
  • Cited 17
  • Views 2,572
  • Annotations
Cite this article as: eLife 2017;6:e27949 doi: 10.7554/eLife.27949

Abstract

Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.

Article and author information

Author details

  1. Beatriz A Osuna

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Conor J Howard

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Subheksha KC

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Frost

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    adam.frost@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. David E Weinberg

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    david.weinberg@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-1709

Funding

National Science Foundation (Graduate Research Fellowship)

  • Beatriz A Osuna

UCSF Mortiz-Heyman Discovery Fellowship (Graduate Student Research Fellowship)

  • Beatriz A Osuna

UCSF Hillblom Fellowship (Graduate Student Research Fellowship)

  • Conor J Howard

Searle Scholars Program (13SSP218)

  • Adam Frost

NIH Office of the Director (DP2GM110772)

  • Adam Frost

UCSF Program for Breakthrough Biomedical Research funded in part by the Sandler Foundation

  • Adam Frost
  • David E Weinberg

NIH Office of the Director (DP5OD017895)

  • David E Weinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, National Institutes of Health, United States

Publication history

  1. Received: April 20, 2017
  2. Accepted: July 11, 2017
  3. Accepted Manuscript published: July 18, 2017 (version 1)
  4. Version of Record published: August 18, 2017 (version 2)

Copyright

© 2017, Osuna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,572
    Page views
  • 563
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Sandy Mattijssen et al.
    Research Advance Updated

    La-related protein 4 (LARP4) directly binds both poly(A) and poly(A)-binding protein (PABP). LARP4 was shown to promote poly(A) tail (PAT) lengthening and stabilization of individual mRNAs presumably by protection from deadenylation (Mattijssen et al., 2017). We developed a nucleotide resolution transcriptome-wide, single molecule SM-PAT-seq method. This revealed LARP4 effects on a wide range of PAT lengths for human mRNAs and mouse mRNAs from LARP4 knockout (KO) and control cells. LARP4 effects are clear on long PAT mRNAs but become more prominent at 30–75 nucleotides. We also analyzed time courses of PAT decay transcriptome-wide and for ~200 immune response mRNAs. This demonstrated accelerated deadenylation in KO cells on PATs < 75 nucleotides and phasing consistent with greater PABP dissociation in the absence of LARP4. Thus, LARP4 shapes PAT profiles throughout mRNA lifespan with impact on mRNA decay at short lengths known to sensitize PABP dissociation in response to deadenylation machinery.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yan Wang et al.
    Research Article

    Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+ dependent manner. Here we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.