The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes

  1. Hirohito Shimizu
  2. Adam D Langenbacher
  3. Jie Huang
  4. Kevin Wang
  5. Georg Otto
  6. Robert Geisler
  7. Yibin Wang
  8. Jau-Nian Chen  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. UCL Institute of Child Health, United Kingdom
  3. Karlsruhe Institute of Technology (KIT), Germany
  4. David Geffen School of Medicine, University of California, Los Angeles, United States

Abstract

Altered Ca2+ handling is often present in diseased hearts undergoing structural remodeling and functional deterioration. However, whether Ca2+ directly regulates sarcomere structure has remained elusive. Using a zebrafish ncx1 mutant, we explored the impacts of impaired Ca2+ homeostasis on myofibril integrity. We found that the E3 ubiquitin ligase murf1 is upregulated in ncx1-deficient hearts. Intriguingly, knocking down murf1 activity or inhibiting proteasome activity preserved myofibril integrity, revealing a MuRF1-mediated proteasome degradation mechanism that is activated in response to abnormal Ca2+ homeostasis. Furthermore, we detected an accumulation of the murf1 regulator FoxO in the nuclei of ncx1-deficient cardiomyocytes. Overexpression of FoxO in wild type cardiomyocytes induced murf1 expression and caused myofibril disarray, whereas inhibiting Calcineurin activity attenuated FoxO-mediated murf1 expression and protected sarcomeres from degradation in ncx1-deficient hearts. Together, our findings reveal a novel mechanism by which Ca2+ overload disrupts myofibril integrity by activating a Calcineurin-FoxO-MuRF1-proteosome signaling pathway.

Article and author information

Author details

  1. Hirohito Shimizu

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam D Langenbacher

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jie Huang

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kevin Wang

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Otto

    Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3929-948X
  6. Robert Geisler

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Yibin Wang

    Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jau-Nian Chen

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    chenjn@mcdb.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8807-3607

Funding

National Institutes of Health (HL096980)

  • Jau-Nian Chen

European Commission (ZF-MODELS)

  • Robert Geisler

European Commission (ZF-HEALTH)

  • Robert Geisler

National Institutes of Health (HL126051)

  • Jau-Nian Chen

National Institutes of Health (HL108186)

  • Yibin Wang

Nakajima Foundation

  • Hirohito Shimizu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Yelon, University of California, San Diego, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, Los Angeles. The protocol was approved by the Chancellor's Animal Research Committee of the University of California, Los Angeles (ARC#2000-051-51A).

Version history

  1. Received: April 20, 2017
  2. Accepted: August 18, 2017
  3. Accepted Manuscript published: August 19, 2017 (version 1)
  4. Version of Record published: August 30, 2017 (version 2)

Copyright

© 2017, Shimizu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,902
    Page views
  • 321
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hirohito Shimizu
  2. Adam D Langenbacher
  3. Jie Huang
  4. Kevin Wang
  5. Georg Otto
  6. Robert Geisler
  7. Yibin Wang
  8. Jau-Nian Chen
(2017)
The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes
eLife 6:e27955.
https://doi.org/10.7554/eLife.27955

Share this article

https://doi.org/10.7554/eLife.27955

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.