Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast

  1. Wahid A Mulla
  2. Chris W Seidel
  3. Jin Zhu
  4. Hung-Ji Tsai
  5. Sarah E Smith
  6. Pushpendra Singh
  7. William D Bradford
  8. Scott McCroskey
  9. Anjali R Nelliat
  10. Juliana Conkright
  11. Allison Peak
  12. Kathryn E Malanowski
  13. Anoja G Perera
  14. Rong Li  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Stowers Institute for Medical Research, United States
  3. Johns Hopkins, United States

Abstract

Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Wahid A Mulla

    Department of Cell Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3356-3902
  2. Chris W Seidel

    Genomics, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jin Zhu

    Department of Cell Biology, Johns Hopkins, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hung-Ji Tsai

    Cell Biology, Johns Hopkins, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah E Smith

    Imaging Facility, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pushpendra Singh

    Cell Biology, Johns Hopkins, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William D Bradford

    Molecular Biology, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott McCroskey

    Molecular Biology, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anjali R Nelliat

    Chemical and Biomolecular Engineering, Johns Hopkins, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juliana Conkright

    Screening core, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Allison Peak

    Molecular Biology Core, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kathryn E Malanowski

    Molecular Biology Core, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Anoja G Perera

    Molecular Biology, Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Rong Li

    Cell Biology, Johns Hopkins, Baltimore, United States
    For correspondence
    rong@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0540-6566

Funding

National Institute of General Medical Sciences (R35-GM118172)

  • Rong Li

American Heart Association (15PRE25090204)

  • Wahid A Mulla

Prostate Cancer Foundation (16YOUN21)

  • Hung-Ji Tsai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Mulla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,900
    views
  • 475
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wahid A Mulla
  2. Chris W Seidel
  3. Jin Zhu
  4. Hung-Ji Tsai
  5. Sarah E Smith
  6. Pushpendra Singh
  7. William D Bradford
  8. Scott McCroskey
  9. Anjali R Nelliat
  10. Juliana Conkright
  11. Allison Peak
  12. Kathryn E Malanowski
  13. Anoja G Perera
  14. Rong Li
(2017)
Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast
eLife 6:e27991.
https://doi.org/10.7554/eLife.27991

Share this article

https://doi.org/10.7554/eLife.27991

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.