Deconstruction of the Beaten Path-Sidestep interaction network provides insights into neuromuscular system development

  1. Hanqing Li
  2. Ash Watson
  3. Agnieszka Olechwier
  4. Michael Anaya
  5. Siamak K Sorooshyari
  6. Dermott P Harnett
  7. Hyung-Kook (Peter) Lee
  8. Jost Vielmetter
  9. Mario A Fares
  10. K Christopher Garcia
  11. Engin Özkan
  12. Juan-Pablo Labrador  Is a corresponding author
  13. Kai Zinn  Is a corresponding author
  1. California Institute of Technology, United States
  2. Trinity College Dublin, Ireland
  3. University of Chicago, United States
  4. Ellipsis Health, United States
  5. Howard Hughes Medical Institute, Stanford University School of Medicine, United States

Abstract

An "interactome" screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we "deorphanized" four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons.

Article and author information

Author details

  1. Hanqing Li

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ash Watson

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Agnieszka Olechwier

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Anaya

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Siamak K Sorooshyari

    Ellipsis Health, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1172-6291
  6. Dermott P Harnett

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  7. Hyung-Kook (Peter) Lee

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jost Vielmetter

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mario A Fares

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  10. K Christopher Garcia

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9273-0278
  11. Engin Özkan

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0263-6729
  12. Juan-Pablo Labrador

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    For correspondence
    labradoj@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.
  13. Kai Zinn

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    zinnk@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6706-5605

Funding

NIH (R37)

  • Kai Zinn

SFI

  • Juan-Pablo Labrador

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,632
    views
  • 597
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanqing Li
  2. Ash Watson
  3. Agnieszka Olechwier
  4. Michael Anaya
  5. Siamak K Sorooshyari
  6. Dermott P Harnett
  7. Hyung-Kook (Peter) Lee
  8. Jost Vielmetter
  9. Mario A Fares
  10. K Christopher Garcia
  11. Engin Özkan
  12. Juan-Pablo Labrador
  13. Kai Zinn
(2017)
Deconstruction of the Beaten Path-Sidestep interaction network provides insights into neuromuscular system development
eLife 6:e28111.
https://doi.org/10.7554/eLife.28111

Share this article

https://doi.org/10.7554/eLife.28111

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.