CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness

  1. Adam D Norris
  2. Xicotencatl Gracida
  3. John Calarco  Is a corresponding author
  1. Harvard University, United States

Abstract

Genetic interaction screens have aided our understanding of complex genetic traits, diseases, and biological pathways. However, approaches for synthetic genetic analysis with null-alleles in metazoans have not been feasible. Here, we present a CRISPR/Cas9-based Synthetic Genetic Interaction (CRISPR-SGI) approach enabling systematic double-mutant generation. Applying this technique in Caenorhabditis elegans, we comprehensively screened interactions within a set of 14 conserved RNA binding protein genes, generating all possible single and double mutants. Many double mutants displayed fitness defects, revealing synthetic interactions. For one interaction between the MBNL1/2 ortholog mbl-1 and the ELAVL ortholog exc-7, double mutants displayed a severely shortened lifespan. Both genes are required for regulating hundreds of transcripts and isoforms, and both may play a critical role in lifespan extension through insulin signaling. Thus, CRISPR-SGI reveals a rich genetic interaction landscape between RNA binding proteins in maintaining organismal health, and will serve as a paradigm applicable to other biological questions.

Article and author information

Author details

  1. Adam D Norris

    FAS Center for Systems Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xicotencatl Gracida

    FAS Center for Systems Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John Calarco

    FAS Center for Systems Biology, Harvard University, Cambridge, United States
    For correspondence
    john.calarco@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2197-7801

Funding

NIH Office of the Director (NIH Early Independence Award DP5OD009153)

  • John Calarco

Harvard University (Bauer Fellows Program)

  • John Calarco

University of Toronto

  • John Calarco

Charles King postdoctoral fellowship

  • Adam D Norris

NSERC (Discovery Grant RGPIN-2017-06573)

  • John Calarco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Version history

  1. Received: April 26, 2017
  2. Accepted: July 17, 2017
  3. Accepted Manuscript published: July 18, 2017 (version 1)
  4. Accepted Manuscript updated: July 20, 2017 (version 2)
  5. Version of Record published: August 4, 2017 (version 3)
  6. Version of Record updated: March 13, 2018 (version 4)

Copyright

© 2017, Norris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,537
    Page views
  • 599
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam D Norris
  2. Xicotencatl Gracida
  3. John Calarco
(2017)
CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness
eLife 6:e28129.
https://doi.org/10.7554/eLife.28129

Share this article

https://doi.org/10.7554/eLife.28129

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Katherine Rickelton, Trisha M Zintel ... Courtney C Babbitt
    Research Article Updated

    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Li Sun, Libo Liu ... Quan-wen Jin
    Research Article Updated

    Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.