Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution

  1. Luis Miguel Diaz-Santin
  2. Natasha Lukoyanova
  3. Emir Aciyan
  4. Alan CM Cheung  Is a corresponding author
  1. University College London, Institute of Structural and Molecular Biology, United Kingdom
  2. Birkbeck College, Institute of Structural and Molecular Biology, United Kingdom

Abstract

Coactivator complexes SAGA and NuA4 stimulate transcription by post-translationally modifying chromatin. Both complexes contain the Tra1 subunit, a highly conserved 3744-residue protein from the Phosphoinositide 3-Kinase-related kinase (PIKK) family and a direct target for multiple sequence-specific activators. We present the Cryo-EM structure of Saccharomyces cerevsisae Tra1 to 3.7 Å resolution, revealing an extensive network of alpha-helical solenoids organized into a diamond ring conformation and is strikingly reminiscent of DNA-PKcs, suggesting a direct role for Tra1 in DNA repair. The structure was fitted into an existing SAGA EM reconstruction and reveals limited contact surfaces to Tra1, hence it does not act as a molecular scaffold within SAGA. Mutations that affect activator targeting are distributed across the Tra1 structure, but also cluster within the N-terminal Finger region, indicating the presence of an activator interaction site. The structure of Tra1 is a key milestone in deciphering the mechanism of multiple coactivator complexes.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Luis Miguel Diaz-Santin

    Department of Structural and Molecular Biology, University College London, Institute of Structural and Molecular Biology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Natasha Lukoyanova

    Biological Sciences, Birkbeck College, Institute of Structural and Molecular Biology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Emir Aciyan

    Biological Sciences, Birkbeck College, Institute of Structural and Molecular Biology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alan CM Cheung

    Department of Structural and Molecular Biology, University College London, Institute of Structural and Molecular Biology, London, United Kingdom
    For correspondence
    alan.cheung@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6430-5127

Funding

Wellcome (102535/Z/13/Z)

  • Alan CM Cheung

Royal Society (RG140138)

  • Alan CM Cheung

University College London (Excellence Fellowship)

  • Alan CM Cheung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: May 5, 2017
  2. Accepted: July 31, 2017
  3. Accepted Manuscript published: August 2, 2017 (version 1)
  4. Version of Record published: August 29, 2017 (version 2)

Copyright

© 2017, Diaz-Santin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,782
    Page views
  • 829
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis Miguel Diaz-Santin
  2. Natasha Lukoyanova
  3. Emir Aciyan
  4. Alan CM Cheung
(2017)
Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution
eLife 6:e28384.
https://doi.org/10.7554/eLife.28384

Share this article

https://doi.org/10.7554/eLife.28384

Further reading

    1. Structural Biology and Molecular Biophysics
    Fouad Ouasti, Maxime Audin ... Francoise Ochsenbein
    Research Article

    Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Matthew R Marunde, Harrison A Fuchs ... Catherine A Musselman
    Research Article Updated

    Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized ‘codes’ that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the ‘histone code’ concept and interrogate it at the nucleosome level.