Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips

  1. Jonathan W Driver
  2. Elisabeth A Geyer
  3. Megan E Bailey
  4. Luke M Rice  Is a corresponding author
  5. Charles L Asbury  Is a corresponding author
  1. University of Washington, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.

Article and author information

Author details

  1. Jonathan W Driver

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elisabeth A Geyer

    Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan E Bailey

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Luke M Rice

    Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Luke.Rice@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles L Asbury

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    casbury@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0143-5394

Funding

Sackler Scholars Program in Integrative Biophysics

  • Jonathan W Driver

Leukemia and Lymphoma Society

  • Jonathan W Driver

National Institutes of Health (T32CA080416)

  • Megan E Bailey

Packard Foundation (2006‐30521)

  • Charles L Asbury

NSF Graduate Research Fellowship (2014177758)

  • Elisabeth A Geyer

National Institutes of Health (RO1GM098543)

  • Luke M Rice

NSF Career Award (MCB1054947)

  • Luke M Rice

National Institutes of Health (RO1GM079373)

  • Charles L Asbury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Driver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,523
    views
  • 419
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan W Driver
  2. Elisabeth A Geyer
  3. Megan E Bailey
  4. Luke M Rice
  5. Charles L Asbury
(2017)
Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips
eLife 6:e28433.
https://doi.org/10.7554/eLife.28433

Share this article

https://doi.org/10.7554/eLife.28433

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.