Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips
Abstract
Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.
Article and author information
Author details
Funding
Sackler Scholars Program in Integrative Biophysics
- Jonathan W Driver
Leukemia and Lymphoma Society
- Jonathan W Driver
National Institutes of Health (T32CA080416)
- Megan E Bailey
Packard Foundation (2006‐30521)
- Charles L Asbury
NSF Graduate Research Fellowship (2014177758)
- Elisabeth A Geyer
National Institutes of Health (RO1GM098543)
- Luke M Rice
NSF Career Award (MCB1054947)
- Luke M Rice
National Institutes of Health (RO1GM079373)
- Charles L Asbury
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Driver et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,556
- views
-
- 420
- downloads
-
- 53
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 53
- citations for umbrella DOI https://doi.org/10.7554/eLife.28433