Abstract

Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Marisa Connell

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen Chen

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jihong Jiang

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Chia-Wei Kuan

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Abbas Fotovati

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Tony Chu

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhengcheng He

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Tess C Lengyell

    Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Huaibiao Li

    Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4086-3321
  10. Torsten Kroll

    Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Amanda M Li

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel Goldowitz

    Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Lucien Frappart

    Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Aspasia Ploubidou

    Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Millan Patel

    Department of Medical Genetics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Linda M Pilarski

    Department of Oncology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Elizabeth M Simpson

    Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  18. Philipp Lange

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  19. Douglas Watt Allan

    Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  20. Christopher A Maxwell

    Department of Paediatrics, University of British Columbia, Vancouver, Canada
    For correspondence
    cmaxwell@bcchr.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0860-4031

Funding

Canadian Institutes of Health Research (OBC 134038)

  • Christopher A Maxwell

Michael Cuccione Foundation

  • Marisa Connell
  • Helen Chen
  • Christopher A Maxwell

Canadian Breast Cancer Foundation

  • Tony Chu

Child and Family Research Institute

  • Zhengcheng He
  • Christopher A Maxwell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the Canadian Council on Animal Care (CCAC) and UBC Animal Care Committee (ACC) (Protocol no. A13-0168).

Copyright

© 2017, Connell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,894
    views
  • 391
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marisa Connell
  2. Helen Chen
  3. Jihong Jiang
  4. Chia-Wei Kuan
  5. Abbas Fotovati
  6. Tony Chu
  7. Zhengcheng He
  8. Tess C Lengyell
  9. Huaibiao Li
  10. Torsten Kroll
  11. Amanda M Li
  12. Daniel Goldowitz
  13. Lucien Frappart
  14. Aspasia Ploubidou
  15. Millan Patel
  16. Linda M Pilarski
  17. Elizabeth M Simpson
  18. Philipp Lange
  19. Douglas Watt Allan
  20. Christopher A Maxwell
(2017)
HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development
eLife 6:e28672.
https://doi.org/10.7554/eLife.28672

Share this article

https://doi.org/10.7554/eLife.28672

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.