Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation

  1. Chee Wai Chua
  2. Nusrat J Epsi
  3. Eva Y Leung
  4. Shouhong Xuan
  5. Ming Lei
  6. Bo I Li
  7. Sarah K Bergren
  8. Hanina Hibshoosh
  9. Antonina Mitrofanova
  10. Michael M Shen  Is a corresponding author
  1. Columbia University Medical Center, United States
  2. Rutgers, The State University of New Jersey, United States

Abstract

Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor that functions in prostate regeneration. Using genetically-engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras results in AR-negative tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chee Wai Chua

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nusrat J Epsi

    Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5363-075X
  3. Eva Y Leung

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shouhong Xuan

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ming Lei

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bo I Li

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah K Bergren

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hanina Hibshoosh

    Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonina Mitrofanova

    Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael M Shen

    Department of Medicine, Columbia University Medical Center, New York, United States
    For correspondence
    mshen@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4042-1657

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK076602)

  • Michael M Shen

National Cancer Institute (CA1966692)

  • Michael M Shen

U.S. Department of Defense (Prostate Cancer Research Program PC101820)

  • Chee Wai Chua

U.S. Department of Defense (Prostate Cancer Research Program PC141064)

  • Bo I Li

Prostate Cancer Foundation

  • Michael M Shen

Rutgers SHP Dean's Intramural Grant

  • Antonina Mitrofanova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed under protocol AAAR9408, which was approved by the Institutional Animal Care and Use Committee at Columbia University Medical Center.

Human subjects: Radical prostatectomy samples were obtained from consented patients under the auspices of an Institutional Review Board approved protocol AAAC4997 at Columbia University Medical Center.

Copyright

© 2018, Chua et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,037
    views
  • 513
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chee Wai Chua
  2. Nusrat J Epsi
  3. Eva Y Leung
  4. Shouhong Xuan
  5. Ming Lei
  6. Bo I Li
  7. Sarah K Bergren
  8. Hanina Hibshoosh
  9. Antonina Mitrofanova
  10. Michael M Shen
(2018)
Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation
eLife 7:e28768.
https://doi.org/10.7554/eLife.28768

Share this article

https://doi.org/10.7554/eLife.28768

Further reading

    1. Cancer Biology
    Phaedra C Ghazi, Kayla T O'Toole ... Martin McMahon
    Research Article

    Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.