Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation

  1. Chee Wai Chua
  2. Nusrat J Epsi
  3. Eva Y Leung
  4. Shouhong Xuan
  5. Ming Lei
  6. Bo I Li
  7. Sarah K Bergren
  8. Hanina Hibshoosh
  9. Antonina Mitrofanova
  10. Michael M Shen  Is a corresponding author
  1. Columbia University Medical Center, United States
  2. Rutgers, The State University of New Jersey, United States

Abstract

Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor that functions in prostate regeneration. Using genetically-engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras results in AR-negative tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chee Wai Chua

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nusrat J Epsi

    Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5363-075X
  3. Eva Y Leung

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shouhong Xuan

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ming Lei

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bo I Li

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah K Bergren

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hanina Hibshoosh

    Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonina Mitrofanova

    Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael M Shen

    Department of Medicine, Columbia University Medical Center, New York, United States
    For correspondence
    mshen@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4042-1657

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK076602)

  • Michael M Shen

National Cancer Institute (CA1966692)

  • Michael M Shen

U.S. Department of Defense (Prostate Cancer Research Program PC101820)

  • Chee Wai Chua

U.S. Department of Defense (Prostate Cancer Research Program PC141064)

  • Bo I Li

Prostate Cancer Foundation

  • Michael M Shen

Rutgers SHP Dean's Intramural Grant

  • Antonina Mitrofanova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed under protocol AAAR9408, which was approved by the Institutional Animal Care and Use Committee at Columbia University Medical Center.

Human subjects: Radical prostatectomy samples were obtained from consented patients under the auspices of an Institutional Review Board approved protocol AAAC4997 at Columbia University Medical Center.

Copyright

© 2018, Chua et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.28768

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cancer Biology
    Pierluigi Scerbo, Benjamin Tisserand ... Bertrand Ducos
    Research Article

    Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.