1. Neuroscience
Download icon

Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

  1. Stefanie Hampel
  2. Claire E McKellar
  3. Julie H Simpson Is a corresponding author
  4. Andrew M Seeds Is a corresponding author
  1. Howard Hughes Medical Institute, United States
Research Advance
Cited
0
Views
405
Comments
0
Cite as: eLife 2017;6:e28804 doi: 10.7554/eLife.28804

Abstract

A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al. 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response.

Article and author information

Author details

  1. Stefanie Hampel

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Claire E McKellar

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julie H Simpson

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    julie.simpson@lifesci.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew M Seeds

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    seeds.andrew@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-4932-6496

Funding

Howard Hughes Medical Institute

  • Julie H Simpson

National Institutes of Health (GM103642)

  • Andrew M Seeds

National Institutes of Health (MD007600)

  • Andrew M Seeds

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Reviewing Editor, Emory University, United States

Publication history

  1. Received: May 19, 2017
  2. Accepted: September 6, 2017
  3. Accepted Manuscript published: September 9, 2017 (version 1)

Copyright

© 2017, Hampel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 405
    Page views
  • 119
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Genes and Chromosomes
    Wahid A Mulla et al.
    Research Article Updated