Inferring multi-scale neural mechanisms with brain network modelling

  1. Michael Schirner
  2. Anthony Randal McIntosh
  3. Viktor Jirsa
  4. Gustavo Deco
  5. Petra Ritter  Is a corresponding author
  1. Charité - Universitätsmedizin Berlin, Germany
  2. University of Toronto, Canada
  3. Aix-Marseille Université, France
  4. Universitat Pompeu Fabra, Spain

Abstract

The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.

Data availability

The following data sets were generated
    1. Schirner M
    2. McIntosh AR
    3. Jirsa V
    4. Deco G
    5. Ritter P
    (2017) Hybrid Brain Model data
    Available at Open Science Framework Repository under a CC0 1.0 Universal license.

Article and author information

Author details

  1. Michael Schirner

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8227-8476
  2. Anthony Randal McIntosh

    Rotman Research Institute of Baycrest Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Viktor Jirsa

    Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Petra Ritter

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    petra.ritter@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4643-4782

Funding

James S. McDonnell Foundation (Brain Network Recovery Group JSMF22002082)

  • Anthony Randal McIntosh
  • Viktor Jirsa
  • Gustavo Deco
  • Petra Ritter

Bundesministerium für Bildung und Forschung (Bernstein Focus State Dependencies of Learning 01GQ0971-5)

  • Petra Ritter

European Union Horizon2020 (ERC Consolidator grant BrainModes 683049)

  • Petra Ritter

Bundesministerium für Bildung und Forschung (US-German Collaboration in Computational Neuroscience 01GQ1504A)

  • Petra Ritter

Bundesministerium für Bildung und Forschung (Max-Planck Society)

  • Petra Ritter

John von Neumann Institute for Computing at Jülich Supercomputing Centre (Grant NIC#8344 & NIC#10276)

  • Petra Ritter

Stiftung Charité/Private Exzellenzinitiative Johanna Quandt and Berlin Institute of Health

  • Petra Ritter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Research was performed in compliance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed consent was provided by all subjects with an understanding of the study prior to data collection, and was approved by the local ethics committee in accordance with the institutional guidelines at Charité Hospital Berlin.

Reviewing Editor

  1. Charles E Schroeder, Columbia University College of Physicians and Surgeons, United States

Publication history

  1. Received: May 23, 2017
  2. Accepted: January 4, 2018
  3. Accepted Manuscript published: January 8, 2018 (version 1)
  4. Version of Record published: February 7, 2018 (version 2)

Copyright

© 2018, Schirner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,803
    Page views
  • 1,274
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Schirner
  2. Anthony Randal McIntosh
  3. Viktor Jirsa
  4. Gustavo Deco
  5. Petra Ritter
(2018)
Inferring multi-scale neural mechanisms with brain network modelling
eLife 7:e28927.
https://doi.org/10.7554/eLife.28927

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Zhe Chen, Garrett J Blair ... Hugh T Blair
    Tools and Resources

    Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Anastasia O Smirnova, Anna M Miroshnichenkova ... Alexander Komkov
    Tools and Resources

    High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies is still challenging. Here we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: Immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.