Inferring multi-scale neural mechanisms with brain network modelling

  1. Michael Schirner
  2. Anthony Randal McIntosh
  3. Viktor Jirsa
  4. Gustavo Deco
  5. Petra Ritter  Is a corresponding author
  1. Charité - Universitätsmedizin Berlin, Germany
  2. University of Toronto, Canada
  3. Aix-Marseille Université, France
  4. Universitat Pompeu Fabra, Spain

Abstract

The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies.

Data availability

The following data sets were generated
    1. Schirner M
    2. McIntosh AR
    3. Jirsa V
    4. Deco G
    5. Ritter P
    (2017) Hybrid Brain Model data
    Available at Open Science Framework Repository under a CC0 1.0 Universal license.

Article and author information

Author details

  1. Michael Schirner

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8227-8476
  2. Anthony Randal McIntosh

    Rotman Research Institute of Baycrest Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Viktor Jirsa

    Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Gustavo Deco

    Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Petra Ritter

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    petra.ritter@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4643-4782

Funding

James S. McDonnell Foundation (Brain Network Recovery Group JSMF22002082)

  • Anthony Randal McIntosh
  • Viktor Jirsa
  • Gustavo Deco
  • Petra Ritter

Bundesministerium für Bildung und Forschung (Bernstein Focus State Dependencies of Learning 01GQ0971-5)

  • Petra Ritter

European Union Horizon2020 (ERC Consolidator grant BrainModes 683049)

  • Petra Ritter

Bundesministerium für Bildung und Forschung (US-German Collaboration in Computational Neuroscience 01GQ1504A)

  • Petra Ritter

Bundesministerium für Bildung und Forschung (Max-Planck Society)

  • Petra Ritter

John von Neumann Institute for Computing at Jülich Supercomputing Centre (Grant NIC#8344 & NIC#10276)

  • Petra Ritter

Stiftung Charité/Private Exzellenzinitiative Johanna Quandt and Berlin Institute of Health

  • Petra Ritter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Research was performed in compliance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed consent was provided by all subjects with an understanding of the study prior to data collection, and was approved by the local ethics committee in accordance with the institutional guidelines at Charité Hospital Berlin.

Copyright

© 2018, Schirner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,376
    views
  • 1,450
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Schirner
  2. Anthony Randal McIntosh
  3. Viktor Jirsa
  4. Gustavo Deco
  5. Petra Ritter
(2018)
Inferring multi-scale neural mechanisms with brain network modelling
eLife 7:e28927.
https://doi.org/10.7554/eLife.28927

Share this article

https://doi.org/10.7554/eLife.28927

Further reading

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.