Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

  1. Jennifer T Wang
  2. Dong Kong
  3. Christian R Hoerner
  4. Jadranka Loncarek
  5. Tim Stearns  Is a corresponding author
  1. Stanford University, United States
  2. National Cancer Institute, National Institutes of Health, United States
  3. Stanford School of Medicine, United States

Abstract

Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and­­­ disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next

Article and author information

Author details

  1. Jennifer T Wang

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8506-5182
  2. Dong Kong

    Laboratory of Protein Dynamics and Signaling, Center for Cancer Research - Frederick, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian R Hoerner

    Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jadranka Loncarek

    Laboratory of Protein Dynamics and Signaling, Center for Cancer Research - Frederick, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tim Stearns

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    stearns@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0671-6582

Funding

National Institute of General Medical Sciences (5 F32 GM117678)

  • Jennifer T Wang

National Cancer Institute (Intramural Program)

  • Dong Kong
  • Jadranka Loncarek

National Institute of General Medical Sciences (R01GM052022)

  • Tim Stearns

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,629
    views
  • 582
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer T Wang
  2. Dong Kong
  3. Christian R Hoerner
  4. Jadranka Loncarek
  5. Tim Stearns
(2017)
Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells
eLife 6:e29061.
https://doi.org/10.7554/eLife.29061

Share this article

https://doi.org/10.7554/eLife.29061

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Developmental Biology
    Jeet H Patel, Mary C Mullins
    Insight

    Disease-causing mutations in the signaling protein BMP4 impair its secretion, but only when it is made as a homodimer.