Sumoylation promotes optimal APC/C activation and timely anaphase

  1. Christine C Lee
  2. Bing Li
  3. Hongtao Yu
  4. Michael J Matunis  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.

Article and author information

Author details

  1. Christine C Lee

    Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bing Li

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongtao Yu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-049X
  4. Michael J Matunis

    Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    mmatuni1@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9350-6611

Funding

National Institutes of Health (T32 CA009110)

  • Christine C Lee

Howard Hughes Medical Institute

  • Hongtao Yu

Cancer Prevention and Research Institute of Texas (RP120717-P2)

  • Hongtao Yu

Welch Foundation (I-1441)

  • Hongtao Yu

National Institutes of Health (GM060980)

  • Michael J Matunis

Cancer Prevention and Research Institute of Texas (RP160667-P2)

  • Hongtao Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,566
    views
  • 471
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine C Lee
  2. Bing Li
  3. Hongtao Yu
  4. Michael J Matunis
(2018)
Sumoylation promotes optimal APC/C activation and timely anaphase
eLife 7:e29539.
https://doi.org/10.7554/eLife.29539

Share this article

https://doi.org/10.7554/eLife.29539

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.