Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-up approach

  1. Guillermo Rodrigo  Is a corresponding author
  2. Mario A Fares
  1. CSIC - UPV, Spain

Abstract

The population genetic mechanisms governing the preservation of gene duplicates, especially in the critical very initial phase, have remained largely unknown. Here, we demonstrate that gene duplication confers per se a weak selective advantage in scenarios of fitness trade-offs. Through a precise quantitative description of a model system, we show that a second gene copy serves to reduce gene expression inaccuracies derived from pervasive molecular noise and suboptimal gene regulation. We then reveal that such an accuracy in the phenotype yields a selective advantage in the order of 0.1% on average, which would allow the positive selection of gene duplication in populations with moderate/large sizes. This advantage is greater at higher noise levels and intermediate concentrations of the environmental molecule, when fitness trade-offs become more evident. Moreover, we discuss how the genome rearrangement rates greatly condition the eventual fixation of duplicates. Overall, our theoretical results highlight an original adaptive value for cells carrying new-born duplicates, broadly analyze the selective conditions that determine their early fates in different organisms, and reconcile population genetics with evolution by gene duplication.

Article and author information

Author details

  1. Guillermo Rodrigo

    Instituto de Biología Molecular y Celular de Plantas, CSIC - UPV, Valencia, Spain
    For correspondence
    guillermo.rodrigo@csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1871-9617
  2. Mario A Fares

    Instituto de Biología Molecular y Celular de Plantas, CSIC - UPV, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Economía y Competitividad (BFU2015-66894-P)

  • Guillermo Rodrigo

Ministerio de Economía y Competitividad (BFU2015-66073-P)

  • Mario A Fares

Generalitat Valenciana (GVA/2016/079)

  • Guillermo Rodrigo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Rodrigo & Fares

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,994
    views
  • 245
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillermo Rodrigo
  2. Mario A Fares
(2018)
Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-up approach
eLife 7:e29739.
https://doi.org/10.7554/eLife.29739

Share this article

https://doi.org/10.7554/eLife.29739

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.