CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape

Abstract

CRISPRi, an adapted CRISPR-Cas9 system, is proposed to act as a strand-specific roadblock to repress transcription in eukaryotic cells using guide RNAs (sgRNAs) to target catalytically inactive Cas9 (dCas9) and offers an alternative to genetic interventions for studying pervasive antisense transcription. Here we successfully use click chemistry to construct DNA templates for sgRNA expression and show, rather than acting simply as a roadblock, sgRNA/dCas9 binding creates an environment that is permissive for transcription initiation/termination, thus generating novel sense and antisense transcripts. At HMS2 in Saccharomyces cerevisiae, sgRNA/dCas9 targeting to the non-template strand for antisense transcription results in antisense transcription termination, premature termination of a proportion of sense transcripts and initiation of a novel antisense transcript downstream of the sgRNA/dCas9 binding site. This redefinition of the transcriptional landscape by CRISPRi demonstrates that it is not strand-specific and highlights the controls and locus understanding required to properly interpret results from CRISPRi interventions.

Article and author information

Author details

  1. Françoise S Howe

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Andrew Russell

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Anna R Lamstaes

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Afaf El-Sagheer

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8706-1292
  5. Anitha Nair

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tom Brown

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6538-3036
  7. Jane Mellor

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    jane.mellor@bioch.ox.ac.uk
    Competing interests
    Jane Mellor, Holds stock in Oxford BioDynamics Ltd., Chronos Therapeutics Ltd., and Sibelius Ltd. but these holdings present no conflict of interest with work in this article..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5196-3734

Funding

Biotechnology and Biological Sciences Research Council (BB/J001694/2)

  • Jane Mellor

Biotechnology and Biological Sciences Research Council (BB/J001694/2)

  • Tom Brown

Wellcome (209897/Z/17/Z)

  • Anna R Lamstaes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Howe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,721
    views
  • 705
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Françoise S Howe
  2. Andrew Russell
  3. Anna R Lamstaes
  4. Afaf El-Sagheer
  5. Anitha Nair
  6. Tom Brown
  7. Jane Mellor
(2017)
CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape
eLife 6:e29878.
https://doi.org/10.7554/eLife.29878

Share this article

https://doi.org/10.7554/eLife.29878

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.