1. Chromosomes and Gene Expression
Download icon

CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape

Short Report
  • Cited 15
  • Views 3,982
  • Annotations
Cite this article as: eLife 2017;6:e29878 doi: 10.7554/eLife.29878

Abstract

CRISPRi, an adapted CRISPR-Cas9 system, is proposed to act as a strand-specific roadblock to repress transcription in eukaryotic cells using guide RNAs (sgRNAs) to target catalytically inactive Cas9 (dCas9) and offers an alternative to genetic interventions for studying pervasive antisense transcription. Here we successfully use click chemistry to construct DNA templates for sgRNA expression and show, rather than acting simply as a roadblock, sgRNA/dCas9 binding creates an environment that is permissive for transcription initiation/termination, thus generating novel sense and antisense transcripts. At HMS2 in Saccharomyces cerevisiae, sgRNA/dCas9 targeting to the non-template strand for antisense transcription results in antisense transcription termination, premature termination of a proportion of sense transcripts and initiation of a novel antisense transcript downstream of the sgRNA/dCas9 binding site. This redefinition of the transcriptional landscape by CRISPRi demonstrates that it is not strand-specific and highlights the controls and locus understanding required to properly interpret results from CRISPRi interventions.

Article and author information

Author details

  1. Françoise S Howe

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Andrew Russell

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Anna R Lamstaes

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Afaf El-Sagheer

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8706-1292
  5. Anitha Nair

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tom Brown

    Department of Chemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6538-3036
  7. Jane Mellor

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    jane.mellor@bioch.ox.ac.uk
    Competing interests
    Jane Mellor, Holds stock in Oxford BioDynamics Ltd., Chronos Therapeutics Ltd., and Sibelius Ltd. but these holdings present no conflict of interest with work in this article..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5196-3734

Funding

Biotechnology and Biological Sciences Research Council (BB/J001694/2)

  • Jane Mellor

Biotechnology and Biological Sciences Research Council (BB/J001694/2)

  • Tom Brown

Wellcome (209897/Z/17/Z)

  • Anna R Lamstaes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ali Shilatifard, Northwestern University, United States

Publication history

  1. Received: June 23, 2017
  2. Accepted: October 22, 2017
  3. Accepted Manuscript published: October 23, 2017 (version 1)
  4. Version of Record published: November 1, 2017 (version 2)

Copyright

© 2017, Howe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,982
    Page views
  • 657
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.