Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex

  1. Sagi Jaffe-Dax  Is a corresponding author
  2. Eva Kimel
  3. Merav Ahissar
  1. Princeton University, United States
  2. The Hebrew University of Jerusalem, Israel

Abstract

Studies of performance of individuals with dyslexia on perceptual tasks suggest that their implicit inference of sound statistics is impaired. Previously, using two-tone frequency discrimination, we found that the effect of previous trials' frequencies on judgments of individuals with dyslexia decayed faster than the effect on controls' judgments, and that the adaptation (decrease of neural response to repeated stimuli) of their ERP responses to tones was shorter (Jaffe-Dax et al., 2017). Here, we show the cortical distribution of this abnormal dynamics of adaptation using fast acquisition fMRI. We find that faster decay of adaptation in dyslexia is widespread, though the most significant effects are found in the left superior temporal lobe, including the auditory cortex. This broad distribution suggests that the faster decay of implicit memory of individuals with dyslexia is a general characteristic of their cortical dynamics, which affects also sensory cortices.

Article and author information

Author details

  1. Sagi Jaffe-Dax

    Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    jaffedax@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8759-6980
  2. Eva Kimel

    Edmond And Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Merav Ahissar

    Edmond And Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.

Funding

Israel Science Foundation (616/11)

  • Merav Ahissar

Gatsby Charitable Foundation

  • Merav Ahissar

German-Israeli Foundation for Scientific Research and Development (I-1303-105.4/2015)

  • Merav Ahissar

Israel Science Foundation (2425/15)

  • Merav Ahissar

Canadian Institute for Advanced Research

  • Merav Ahissar

Azrieli Foundation

  • Merav Ahissar

International Development Research Centre

  • Merav Ahissar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Human subjects: Informed consent was acquired from all participants. The study was approved by The Hebrew University Committee for the Use of Human Subject in Research.

Version history

  1. Received: November 15, 2017
  2. Accepted: February 27, 2018
  3. Accepted Manuscript published: February 28, 2018 (version 1)
  4. Version of Record published: March 20, 2018 (version 2)

Copyright

© 2018, Jaffe-Dax et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,288
    views
  • 182
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sagi Jaffe-Dax
  2. Eva Kimel
  3. Merav Ahissar
(2018)
Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex
eLife 7:e30018.
https://doi.org/10.7554/eLife.30018

Share this article

https://doi.org/10.7554/eLife.30018

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.