Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex
Abstract
Studies of performance of individuals with dyslexia on perceptual tasks suggest that their implicit inference of sound statistics is impaired. Previously, using two-tone frequency discrimination, we found that the effect of previous trials' frequencies on judgments of individuals with dyslexia decayed faster than the effect on controls' judgments, and that the adaptation (decrease of neural response to repeated stimuli) of their ERP responses to tones was shorter (Jaffe-Dax et al., 2017). Here, we show the cortical distribution of this abnormal dynamics of adaptation using fast acquisition fMRI. We find that faster decay of adaptation in dyslexia is widespread, though the most significant effects are found in the left superior temporal lobe, including the auditory cortex. This broad distribution suggests that the faster decay of implicit memory of individuals with dyslexia is a general characteristic of their cortical dynamics, which affects also sensory cortices.
Article and author information
Author details
Funding
Israel Science Foundation (616/11)
- Merav Ahissar
Gatsby Charitable Foundation
- Merav Ahissar
German-Israeli Foundation for Scientific Research and Development (I-1303-105.4/2015)
- Merav Ahissar
Israel Science Foundation (2425/15)
- Merav Ahissar
Canadian Institute for Advanced Research
- Merav Ahissar
Azrieli Foundation
- Merav Ahissar
International Development Research Centre
- Merav Ahissar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent was acquired from all participants. The study was approved by The Hebrew University Committee for the Use of Human Subject in Research.
Copyright
© 2018, Jaffe-Dax et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,329
- views
-
- 188
- downloads
-
- 32
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.
-
- Neuroscience
By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.