Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome

  1. Paul E Schavemaker
  2. Wojciech M Śmigiel
  3. Bert Poolman  Is a corresponding author
  1. University of Groningen, Netherlands

Abstract

Much of the molecular motion in the cytoplasm is diffusive, which possibly limits the tempo of processes. We studied the dependence of protein mobility on protein surface properties and ionic strength. We used surface-modified fluorescent proteins (FPs) and determined their translational diffusion coefficients (D) in the cytoplasm of Escherichia coli, Lactococcus lactis and Haloferax volcanii. We find that in E. coli D depends on the net charge and its distribution over the protein, with positive proteins diffusing up to 100-fold slower than negative ones. This effect is weaker in L. lactis and Hfx. volcanii due to electrostatic screening. The decrease in mobility is probably caused by interaction of positive FPs with ribosomes as shown in in vivo diffusion measurements and confirmed in vitro with purified ribosomes. Ribosome surface properties may thus limit the composition of the cytoplasmic proteome. This finding lays bare a paradox in the functioning of prokaryotic (endo)symbionts.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Paul E Schavemaker

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Wojciech M Śmigiel

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Bert Poolman

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    For correspondence
    b.poolman@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-531X

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (TOP-PUNT.13.006)

  • Bert Poolman

H2020 European Research Council (Advanced Grant (ABC Volume))

  • Wojciech M Śmigiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Victor Sourjik, Max Planck Institute for Terrestrial Microbiology, Germany

Version history

  1. Received: June 30, 2017
  2. Accepted: November 14, 2017
  3. Accepted Manuscript published: November 20, 2017 (version 1)
  4. Version of Record published: December 12, 2017 (version 2)

Copyright

© 2017, Schavemaker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,668
    views
  • 742
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul E Schavemaker
  2. Wojciech M Śmigiel
  3. Bert Poolman
(2017)
Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome
eLife 6:e30084.
https://doi.org/10.7554/eLife.30084

Share this article

https://doi.org/10.7554/eLife.30084

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.