Abstract

Plant meristems carry pools of continuously active stem cells, whose activity is controlled by developmental and environmental signals. After stem cell division, daughter cells that exit the stem cell domain acquire transit amplifying cell identity before they are incorporated into organs and differentiate. In this study, we used an integrated approach to elucidate the role of HECATE (HEC) genes in regulating developmental trajectories of shoot stem cells in Arabidopsis thaliana. Our work reveals that HEC function stabilizes cell fate in distinct zones of the shoot meristem thereby controlling the spatio-temporal dynamics of stem cell differentiation. Importantly, this activity is concomitant with the local modulation of cellular responses to cytokinin and auxin, two key phytohormones regulating cell behaviour. Mechanistically, we show that HEC factors transcriptionally control and physically interact with MONOPTEROS (MP), a key regulator of auxin signalling, and modulate the autocatalytic stabilization of auxin signalling output.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Christophe Gaillochet

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Stiehl

    Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Wenzl

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan-José Ripoll

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8229-1555
  5. Lindsay J Bailey-Steinitz

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lanxin Li

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Pfeiffer

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrej Miotk

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2581-672X
  9. Jana Hakenjos

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Joachim Forner

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6406-7066
  11. Martin F Yanofsky

    Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Anna Marciniak-Czochra

    Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Jan U Lohmann

    Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    For correspondence
    jan.lohmann@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3667-187X

Funding

Deutsche Forschungsgemeinschaft (SFB873)

  • Anna Marciniak-Czochra
  • Jan U Lohmann

European Social Fund (Elite programm für Postdocs)

  • Anne Pfeiffer

Baden-Württemberg Stiftung (Elite programm für Postdocs)

  • Anne Pfeiffer

National Institutes of Health (1R01GM112976-01A1)

  • Martin F Yanofsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Gaillochet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,220
    views
  • 1,195
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.30135

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.