Distinct cellular and molecular mechanisms for β3 adrenergic receptor induced beige adipocyte formation

  1. Yuwei Jiang
  2. Daniel C Berry  Is a corresponding author
  3. Jon Graff  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States

Abstract

Beige/brite adipocytes are induced within white adipose tissues (WAT) and, when activated, consume glucose and fatty acids to produce heat. Classically, two stimuli have been used to trigger a beiging response: cold temperatures and β3-adrenergic receptor (Adrb3) agonists. These two beiging triggers have been used interchangeably but whether these two stimuli may induce beiging differently at cellular and molecular levels remains unclear. Here we found that cold-induced beige adipocyte formation requires Adrb1, not Adrb3, activation. Adrb1 activation stimulates WAT resident perivascular (Acta2+) cells to form cold-induced beige adipocytes. In contrast, Adrb3 activation stimulates mature white adipocytes to convert into beige adipocytes. Necessity tests, using mature adipocyte specific Prdm16 deletion strategies, demonstrated that adipocytes are a required and are a predominant source to generate Adrb3-induced, but not cold-induced, beige adipocytes. Collectively, we identify that cold temperatures and Adrb3 agonists activate distinct cellular populations that express different β-adrenergic receptors to induce beige adipogenesis.

Article and author information

Author details

  1. Yuwei Jiang

    Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Daniel C Berry

    Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    dcb37@cornell.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5200-1182
  3. Jon Graff

    Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    jon.graff@utsouthwestern.edu
    Competing interests
    Jon Graff, is a co-founder and shareholder of Reata Pharmaceuticals. Reata Pharmaceuticals has no financial interest in this study.

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK109027)

  • Daniel C Berry

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK111771)

  • Yuwei Jiang

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK088220)

  • Jon Graff

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK064261)

  • Jon Graff

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK066556)

  • Jon Graff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were maintained under the approved protocols and ethical guidelines of the UT Southwestern Medical Center Animal Care and Use Committee under the protocol number 2016--101336.

Copyright

© 2017, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,398
    views
  • 809
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuwei Jiang
  2. Daniel C Berry
  3. Jon Graff
(2017)
Distinct cellular and molecular mechanisms for β3 adrenergic receptor induced beige adipocyte formation
eLife 6:e30329.
https://doi.org/10.7554/eLife.30329

Share this article

https://doi.org/10.7554/eLife.30329

Further reading

    1. Cell Biology
    Jessica E Schwarz, Antonijo Mrčela ... Amita Sehgal
    Short Report

    Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25–30) and old (age 70–76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer’s Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.

    1. Cell Biology
    2. Genetics and Genomics
    Priyanka Das, Alejandro Aballay, Jogender Singh
    Research Article

    Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.