1. Cell Biology
Download icon

Dnmt3a is an epigenetic mediator of adipose insulin resistance

  1. Dongjoo You
  2. Emma Nilsson
  3. Danielle E Tenen
  4. Anna Lyubetskaya
  5. James Lo
  6. Rencong Jiang
  7. Jasmine Deng
  8. Brian A Dawes
  9. Allan Vaag
  10. Charlotte Ling
  11. Evan D Rosen  Is a corresponding author
  12. Sona Kang  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Lund University, Sweden
  3. Beth Israel Deaconess Medical Center, United States
  4. Broad Institute, United States
  5. Weill Cornell Medical College, United States
  6. University of Copenhagen, Denmark
Research Article
  • Cited 45
  • Views 3,450
  • Annotations
Cite this article as: eLife 2017;6:e30766 doi: 10.7554/eLife.30766

Abstract

Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo.

Article and author information

Author details

  1. Dongjoo You

    Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emma Nilsson

    Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Danielle E Tenen

    Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Lyubetskaya

    Broad Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James Lo

    Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rencong Jiang

    Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jasmine Deng

    Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian A Dawes

    Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Allan Vaag

    Diabetes and Metabolism, Department of Endocrinology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Charlotte Ling

    Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Evan D Rosen

    Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, United States
    For correspondence
    erosen@bidmc.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Sona Kang

    Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, United States
    For correspondence
    kangs@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9831-677X

Funding

American Heart Association (15SDG25240017)

  • Sona Kang

National Institutes of Health (102173)

  • Evan D Rosen

National Institutes of Health (102170)

  • Evan D Rosen

National Institutes of Health (85171)

  • Evan D Rosen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal work was approved by the BIDMC IACUC (056-2017) and/or the UC Berkeley ACUC (AUP-2015-08-7887).

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Publication history

  1. Received: July 26, 2017
  2. Accepted: October 29, 2017
  3. Accepted Manuscript published: November 1, 2017 (version 1)
  4. Version of Record published: December 14, 2017 (version 2)

Copyright

© 2017, You et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,450
    Page views
  • 729
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cell Biology
    Ian F Price et al.
    Research Article Updated

    The germ line produces gametes that transmit genetic and epigenetic information to the next generation. Maintenance of germ cells and development of gametes require germ granules—well-conserved membraneless and RNA-rich organelles. The composition of germ granules is elusive owing to their dynamic nature and their exclusive expression in the germ line. Using Caenorhabditis elegans germ granule, called P granule, as a model system, we employed a proximity-based labeling method in combination with mass spectrometry to comprehensively define its protein components. This set of experiments identified over 200 proteins, many of which contain intrinsically disordered regions (IDRs). An RNA interference-based screen identified factors that are essential for P granule assembly, notably EGGD-1 and EGGD-2, two putative LOTUS-domain proteins. Loss of eggd-1 and eggd-2 results in separation of P granules from the nuclear envelope, germline atrophy, and reduced fertility. We show that IDRs of EGGD-1 are required to anchor EGGD-1 to the nuclear periphery while its LOTUS domains are required to promote the perinuclear localization of P granules. Taken together, our work expands the repertoire of P granule constituents and provides new insights into the role of LOTUS-domain proteins in germ granule organization.

    1. Cell Biology
    Natalya Pashkova et al.
    Research Article

    Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.