Epigenetics: How does obesity lead to insulin resistance?

Experiments on mice show that an enzyme called DNA methyltransferase 3a is involved in insulin resistance via an epigenetic mechanism.
  1. Chan Hee J Choi  Is a corresponding author
  2. Paul Cohen  Is a corresponding author
  1. The Rockefeller University, United States

Insulin is a hormone produced by the pancreas that regulates the concentration of glucose in the blood (Saltiel and Kahn, 2001; Taniguchi et al., 2006). Following a meal, insulin secretion increases glucose uptake in muscle and fat, and reduces the production of glucose by the liver, enabling blood glucose levels to be maintained within a precise range. However, in cases of chronic overnutrition, the body can become less responsive to insulin, leading to a state known as insulin resistance. Initially, the pancreas responds by secreting more insulin, but when this can no longer compensate for the impaired insulin response of the liver and other organs, type 2 diabetes develops (Prentki and Nolan, 2006).

Insulin resistance serves as a key link between obesity and type 2 diabetes (Kahn and Flier, 2000), and understanding how obesity causes insulin resistance will improve our knowledge of type 2 diabetes and our ability to treat obesity-related complications. It is likely that the development of obesity-induced insulin resistance involves a complex interplay of genetic and environmental factors (Samuel and Shulman, 2012).

One mechanism by which cells can integrate signals from the environment is through epigenetic changes: these are changes that modify DNA or the proteins that organize the DNA within cells without changing the underlying DNA sequence (Jaenisch and Bird, 2003). DNA methylation, for example, is an epigenetic change that involves adding a methyl group to a cytosine base that is upstream of guanosine. Islands of these CpG sequences are often found in the gene promoters near the start of genes, and the methylation of these bases usually reduces gene expression. Now, in eLife, Sona Kang, Evan Rosen and colleagues in the USA, Denmark and Sweden – including Dongjoo You of the University of California Berkeley as first author – report how a key epigenetic regulator called Dnmt3a contributes to obesity-related insulin resistance (You et al., 2017).

The DNA methyltransferase (Dnmt) family of enzymes catalyze the methylation of DNA (Denis et al., 2011). You et al. noticed that fat cells taken from obese mice contained high levels of two DNA methyltransferases, and experiments on fat cells grown in the laboratory suggested that one of these enzymes – Dnmt3a – had a role in the development of insulin resistance. When the researchers knocked down or inhibited Dnmt3a, the fat cells were able to take up more glucose in response to insulin, even when they had been treated with substances that induce insulin resistance. Similar results were observed in genetically engineered mice that lacked Dnmt3a in their fat cells. When placed on a high fat diet, the knockout mice gained the same amount of weight as wild-type mice, but they demonstrated improved glucose and insulin tolerance, and their fat cells responded more strongly to insulin.

You et al. then performed a screen to check if blocking or overexpressing Dnmt3a changed the level of transcription of various genes. They found that a gene called Fgf21, which encodes a secreted protein that helps fat cells to absorb glucose (Kharitonenkov et al., 2005), was transcribed less when Dnmt3a was overexpressed. Fgf21 is predominantly secreted by the liver, but fat cells are also known to express Fgf21. Based on their findings, You et al. suggest that Dnmt3a can induce insulin resistance in fat cells by methylating the CpG islands in the Fgf21 promoter region. This reduces the expression of Fgf21 genes, which in turn makes fat cells more resistant to insulin. Similar mechanisms might also be at play in human fat cells: people with diabetes had higher methylation levels near the FGF21 gene compared to people without diabetes, and the degree of methylation was also inversely correlated with the levels of FGF21 mRNA.

While insulin resistance may play a fundamental role in the development of type 2 diabetes in obese individuals, currently available anti-diabetic agents that target insulin resistance are limited to a single class of drugs called thiazolidinediones, which are no longer widely used due to potential side effects (Yki-Järvinen, 2004). DNA methylation has been an attractive therapeutic target in other clinical contexts, such as cancer. Therefore, targeting Dnmt3a or Fgf21 could provide new treatment opportunities for obesity-related complications such as insulin resistance.

You et al.’s study raises several key questions that could be addressed in future studies. First, the mechanism underlying the upregulation of Dnmt3a in obesity is not clear. Second, the repression of Fgf21 appears to explain only some of the downstream actions of Dnmt3a. Further research may be able to identify additional genes and pathways that are regulated by Dnmt3a, which could help with the development of alternative treatments for insulin resistance.

References

Article and author information

Author details

  1. Chan Hee J Choi

    Chan Hee J Choi is in the Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States

    For correspondence
    chc2056@med.cornell.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9892-9330
  2. Paul Cohen

    Paul Cohen is in the Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States

    For correspondence
    pcohen@mail.rockefeller.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Publication history

  1. Version of Record published:

Copyright

© 2017, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,912
    views
  • 437
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan Hee J Choi
  2. Paul Cohen
(2017)
Epigenetics: How does obesity lead to insulin resistance?
eLife 6:e33298.
https://doi.org/10.7554/eLife.33298
  1. Further reading

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.