Epigenetics: How does obesity lead to insulin resistance?

  1. Chan Hee J Choi  Is a corresponding author
  2. Paul Cohen  Is a corresponding author
  1. The Rockefeller University, United States

Abstract

Experiments on mice show that an enzyme called DNA methyltransferase 3a is involved in insulin resistance via an epigenetic mechanism.

Main text

Insulin is a hormone produced by the pancreas that regulates the concentration of glucose in the blood (Saltiel and Kahn, 2001; Taniguchi et al., 2006). Following a meal, insulin secretion increases glucose uptake in muscle and fat, and reduces the production of glucose by the liver, enabling blood glucose levels to be maintained within a precise range. However, in cases of chronic overnutrition, the body can become less responsive to insulin, leading to a state known as insulin resistance. Initially, the pancreas responds by secreting more insulin, but when this can no longer compensate for the impaired insulin response of the liver and other organs, type 2 diabetes develops (Prentki and Nolan, 2006).

Insulin resistance serves as a key link between obesity and type 2 diabetes (Kahn and Flier, 2000), and understanding how obesity causes insulin resistance will improve our knowledge of type 2 diabetes and our ability to treat obesity-related complications. It is likely that the development of obesity-induced insulin resistance involves a complex interplay of genetic and environmental factors (Samuel and Shulman, 2012).

One mechanism by which cells can integrate signals from the environment is through epigenetic changes: these are changes that modify DNA or the proteins that organize the DNA within cells without changing the underlying DNA sequence (Jaenisch and Bird, 2003). DNA methylation, for example, is an epigenetic change that involves adding a methyl group to a cytosine base that is upstream of guanosine. Islands of these CpG sequences are often found in the gene promoters near the start of genes, and the methylation of these bases usually reduces gene expression. Now, in eLife, Sona Kang, Evan Rosen and colleagues in the USA, Denmark and Sweden – including Dongjoo You of the University of California Berkeley as first author – report how a key epigenetic regulator called Dnmt3a contributes to obesity-related insulin resistance (You et al., 2017).

The DNA methyltransferase (Dnmt) family of enzymes catalyze the methylation of DNA (Denis et al., 2011). You et al. noticed that fat cells taken from obese mice contained high levels of two DNA methyltransferases, and experiments on fat cells grown in the laboratory suggested that one of these enzymes – Dnmt3a – had a role in the development of insulin resistance. When the researchers knocked down or inhibited Dnmt3a, the fat cells were able to take up more glucose in response to insulin, even when they had been treated with substances that induce insulin resistance. Similar results were observed in genetically engineered mice that lacked Dnmt3a in their fat cells. When placed on a high fat diet, the knockout mice gained the same amount of weight as wild-type mice, but they demonstrated improved glucose and insulin tolerance, and their fat cells responded more strongly to insulin.

You et al. then performed a screen to check if blocking or overexpressing Dnmt3a changed the level of transcription of various genes. They found that a gene called Fgf21, which encodes a secreted protein that helps fat cells to absorb glucose (Kharitonenkov et al., 2005), was transcribed less when Dnmt3a was overexpressed. Fgf21 is predominantly secreted by the liver, but fat cells are also known to express Fgf21. Based on their findings, You et al. suggest that Dnmt3a can induce insulin resistance in fat cells by methylating the CpG islands in the Fgf21 promoter region. This reduces the expression of Fgf21 genes, which in turn makes fat cells more resistant to insulin. Similar mechanisms might also be at play in human fat cells: people with diabetes had higher methylation levels near the FGF21 gene compared to people without diabetes, and the degree of methylation was also inversely correlated with the levels of FGF21 mRNA.

While insulin resistance may play a fundamental role in the development of type 2 diabetes in obese individuals, currently available anti-diabetic agents that target insulin resistance are limited to a single class of drugs called thiazolidinediones, which are no longer widely used due to potential side effects (Yki-Järvinen, 2004). DNA methylation has been an attractive therapeutic target in other clinical contexts, such as cancer. Therefore, targeting Dnmt3a or Fgf21 could provide new treatment opportunities for obesity-related complications such as insulin resistance.

You et al.’s study raises several key questions that could be addressed in future studies. First, the mechanism underlying the upregulation of Dnmt3a in obesity is not clear. Second, the repression of Fgf21 appears to explain only some of the downstream actions of Dnmt3a. Further research may be able to identify additional genes and pathways that are regulated by Dnmt3a, which could help with the development of alternative treatments for insulin resistance.

References

Article and author information

Author details

  1. Chan Hee J Choi

    Chan Hee J Choi is in the Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States

    For correspondence
    chc2056@med.cornell.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9892-9330
  2. Paul Cohen

    Paul Cohen is in the Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States

    For correspondence
    pcohen@mail.rockefeller.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Publication history

  1. Version of Record published: December 14, 2017 (version 1)

Copyright

© 2017, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,499
    Page views
  • 398
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan Hee J Choi
  2. Paul Cohen
(2017)
Epigenetics: How does obesity lead to insulin resistance?
eLife 6:e33298.
https://doi.org/10.7554/eLife.33298

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haikel Dridi et al.
    Research Article Updated

    Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in Caenorhabditis elegans (C. elegans); however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals, UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Furthermore, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in ‘leaky’ channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2–3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in lifespan among species.

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.