KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring

  1. Noriko Homma
  2. Ruyun Zhou
  3. Muhammad Imran Naseer
  4. Adeel G Chaudhary
  5. Mohammed H Al-Qahtani
  6. Nobutaka Hirokawa  Is a corresponding author
  1. The University of Tokyo, Japan
  2. King Abdulaziz University, Saudi Arabia

Abstract

Kinesin super family protein 2A (KIF2A), an ATP-dependent microtubule (MT) destabilizer, regulates cell migration, axon elongation, and pruning in the developing nervous system. KIF2A mutations have recently been identified in patients with malformed cortical development. However, postnatal KIF2A is continuously expressed in the hippocampus, in which new neurons are generated throughout an individual's life in established neuronal circuits. In this study, we investigated KIF2A function in the postnatal hippocampus by using tamoxifen-inducible Kif2a conditional knockout (Kif2a-cKO) mice. Despite exhibiting no significant defects in neuronal proliferation or migration, Kif2a-cKO mice showed signs of an epileptic hippocampus. In addition to mossy fiber sprouting, the Kif2a-cKO dentate granule cells (DGCs) showed dendro-axonal conversion, leading to the growth of many aberrant overextended dendrites that eventually developed axonal properties. These results suggested that postnatal KIF2A is a key length regulator of DGC developing neurites and is involved in the establishment of precise postnatal hippocampal wiring.

Article and author information

Author details

  1. Noriko Homma

    Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ruyun Zhou

    Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhammad Imran Naseer

    Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  4. Adeel G Chaudhary

    Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohammed H Al-Qahtani

    Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  6. Nobutaka Hirokawa

    Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    For correspondence
    hirokawa@m.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0081-5264

Funding

Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for scientific research)

  • Nobutaka Hirokawa

King Abdulaziz University (NSTIP strategic technologies program project (12-BIO305059-03))

  • Nobutaka Hirokawa

King Abdulaziz University (Deanship of Scientific Research (DSR: 1-6-1432/HiCi))

  • Muhammad Imran Naseer
  • Adeel G Chaudhary
  • Mohammed H Al-Qahtani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Graduate School of Medicine, University of Tokyo. All of the animals were handled according to approved institutional animal care and use committee protocols of the University of Tokyo. The protocol was approved by the Committee on the Life Science Research Ethics and Safty of the Graduate School of Medicine, University of Tokyo (Permit Number: Med-P10-130-133). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: August 1, 2017
  2. Accepted: January 8, 2018
  3. Accepted Manuscript published: January 9, 2018 (version 1)
  4. Version of Record published: February 13, 2018 (version 2)

Copyright

© 2018, Homma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,123
    Page views
  • 422
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noriko Homma
  2. Ruyun Zhou
  3. Muhammad Imran Naseer
  4. Adeel G Chaudhary
  5. Mohammed H Al-Qahtani
  6. Nobutaka Hirokawa
(2018)
KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring
eLife 7:e30935.
https://doi.org/10.7554/eLife.30935

Further reading

    1. Cell Biology
    Tai-De Li et al.
    Research Article

    Branched actin networks are self-assembling molecular motors that move biological membranes and drive many important cellular processes, including phagocytosis, endocytosis, and pseudopod protrusion. When confronted with opposing forces, the growth rate of these networks slows and their density increases, but the stoichiometry of key components does not change. The molecular mechanisms governing this force response are not well understood, so we used single-molecule imaging and AFM cantilever deflection to measure how applied forces affect each step in branched actin network assembly. Although load forces are observed to increase the density of growing filaments, we find that they actually decrease the rate of filament nucleation due to inhibitory interactions between actin filament ends and nucleation promoting factors. The force-induced increase in network density turns out to result from an exponential drop in the rate constant that governs filament capping. The force dependence of filament capping matches that of filament elongation and can be explained by expanding Brownian Ratchet theory to cover both processes. We tested a key prediction of this expanded theory by measuring the force-dependent activity of engineered capping protein variants and found that increasing the size of the capping protein increases its sensitivity to applied forces. In summary, we find that Brownian Ratchets underlie not only the ability of growing actin filaments to generate force but also the ability of branched actin networks to adapt their architecture to changing loads.

    1. Cell Biology
    2. Immunology and Inflammation
    Ekaterini Maria Lyras et al.
    Research Article

    The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.