Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS

  1. Maria de Lourdes Martinez-Silva
  2. Rebecca D Imhoff-Manuel
  3. Aarti Sharma
  4. CJ Heckman
  5. Neil A Shneider
  6. Francesco Roselli
  7. Daniel Zytnicki
  8. Marin Manuel  Is a corresponding author
  1. CNRS/Université Paris Descartes, France
  2. Columbia University, United States
  3. Northwestern University, United States
  4. Ulm University, Germany

Abstract

Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration.

Article and author information

Author details

  1. Maria de Lourdes Martinez-Silva

    Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, CNRS/Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca D Imhoff-Manuel

    Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, CNRS/Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Aarti Sharma

    Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. CJ Heckman

    Department of Physiology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Neil A Shneider

    Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3223-7366
  6. Francesco Roselli

    Department of Neurology, Ulm University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Zytnicki

    Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, CNRS/Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0431-9604
  8. Marin Manuel

    Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, CNRS/Université Paris Descartes, Paris, France
    For correspondence
    marin.manuel@neurobio.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5344-3572

Funding

National Institute of Neurological Disorders and Stroke (R01NS077863)

  • CJ Heckman
  • Marin Manuel

Target ALS

  • Aarti Sharma
  • Neil A Shneider
  • Daniel Zytnicki
  • Marin Manuel

AFM-Téléthon (HYPERTOXIC)

  • Daniel Zytnicki
  • Marin Manuel

Synapsis Foundation

  • Francesco Roselli

Baustein Program of Ulm University Medical Faculty

  • Francesco Roselli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with European directives (86/609/CEE and 2010-63-UE) and the French legislation. They were approved by Paris Descartes University ethics committee (authorizations CEEA34.MM.064.12 and 01256.02). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Lee L Rubin, Harvard Stem Cell Institute, Harvard University, United States

Publication history

  1. Received: August 4, 2017
  2. Accepted: March 14, 2018
  3. Accepted Manuscript published: March 27, 2018 (version 1)
  4. Version of Record published: April 27, 2018 (version 2)

Copyright

© 2018, Martinez-Silva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,333
    Page views
  • 632
    Downloads
  • 75
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria de Lourdes Martinez-Silva
  2. Rebecca D Imhoff-Manuel
  3. Aarti Sharma
  4. CJ Heckman
  5. Neil A Shneider
  6. Francesco Roselli
  7. Daniel Zytnicki
  8. Marin Manuel
(2018)
Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS
eLife 7:e30955.
https://doi.org/10.7554/eLife.30955

Further reading

    1. Neuroscience
    Utsav Gyawali, David A Martin ... Donna Calu
    Research Article

    Midbrain and striatal dopamine signals have been extremely well characterized over the past several decades, yet novel dopamine signals and functions in reward learning and motivation continue to emerge. A similar characterization of real-time sub-second dopamine signals in areas outside of the striatum has been limited. Recent advances in fluorescent sensor technology and fiber photometry permit the measurement of dopamine binding correlates, which can divulge basic functions of dopamine signaling in non-striatal dopamine terminal regions, like the dorsal bed nucleus of the stria terminalis (dBNST). Here, we record GRABDA signals in the dBNST during a Pavlovian lever autoshaping task. We observe greater Pavlovian cue-evoked dBNST GRABDA signals in sign-tracking (ST) compared to goal-tracking/intermediate (GT/INT) rats and the magnitude of cue-evoked dBNST GRABDA signals decreases immediately following reinforcer-specific satiety. When we deliver unexpected rewards or omit expected rewards, we find that dBNST dopamine signals encode bidirectional reward prediction errors in GT/INT rats, but only positive prediction errors in ST rats. Since sign- and goal-tracking approach strategies are associated with distinct drug relapse vulnerabilities, we examined the effects of experimenter-administered fentanyl on dBNST dopamine associative encoding. Systemic fentanyl injections do not disrupt cue discrimination but generally potentiate dBNST dopamine signals. These results reveal multiple dBNST dopamine correlates of learning and motivation that depend on the Pavlovian approach strategy employed.

    1. Medicine
    2. Neuroscience
    Sachin Sharma, Russell Littman ... Olujimi A Ajijola
    Research Article Updated

    The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart, we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) neuropeptide-Y (NPY) -expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.