Targeting RAS driven human cancer cells with antibodies to upregulated and essential cell-surface proteins

  1. Alexander John Martinko
  2. Charles Truillet
  3. Olivier Julien
  4. Juan Diaz
  5. Max A Horlbeck
  6. Gordon Whiteley
  7. Josip Blonder
  8. Jonathan S Weissman
  9. Sourav Bandyopadhyay
  10. Michael Evans
  11. James A Wells  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Frederick National Laboratory for Cancer Research, United States

Abstract

While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRASG12V, and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Alexander John Martinko

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4025-959X
  2. Charles Truillet

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Olivier Julien

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7068-7299
  4. Juan Diaz

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Max A Horlbeck

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3875-871X
  6. Gordon Whiteley

    Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  7. Josip Blonder

    Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  8. Jonathan S Weissman

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2445-670X
  9. Sourav Bandyopadhyay

    Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3120-923X
  10. Michael Evans

    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. James A Wells

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    jim.wells@ucsf.edu
    Competing interests
    James A Wells, Celgene Corp provided some of the funding for this work.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8267-5519

Funding

National Institutes of Health (CA191018)

  • Alexander John Martinko
  • Olivier Julien
  • James A Wells

Celgene (GM097316)

  • Alexander John Martinko
  • James A Wells

National Institutes of Health (GM097316)

  • Alexander John Martinko
  • Olivier Julien
  • James A Wells

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AN110806-03C) of the University of California San Francisco. Animals that were studied with PET/CT were anesthitized with a mixture of isoflurane/oxygen and humanely euthanized with CO2(g).

Copyright

© 2018, Martinko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,090
    views
  • 1,859
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander John Martinko
  2. Charles Truillet
  3. Olivier Julien
  4. Juan Diaz
  5. Max A Horlbeck
  6. Gordon Whiteley
  7. Josip Blonder
  8. Jonathan S Weissman
  9. Sourav Bandyopadhyay
  10. Michael Evans
  11. James A Wells
(2018)
Targeting RAS driven human cancer cells with antibodies to upregulated and essential cell-surface proteins
eLife 7:e31098.
https://doi.org/10.7554/eLife.31098

Share this article

https://doi.org/10.7554/eLife.31098

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.