Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery

  1. Ting-Ya Chang
  2. Chen Chen
  3. Min Lee
  4. Ya-Chu Chang
  5. Chi-Huan Lu
  6. Shao-Tzu Lu
  7. De-Yao Wang
  8. Aijun Wang
  9. Chin-Lin Guo
  10. Pei-Lin Cheng  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. University of California, Davis, United States

Abstract

Neurite initiation is the first step in neuronal development and occurs spontaneously in soft tissue environments. Although the mechanisms regulating the morphology of migratory cells on rigid substrates in cell culture are widely known, how soft environments modulate neurite initiation remains elusive. Using hydrogel cultures, pharmacologic inhibition, and genetic approaches, we reveal that paxillin-linked endocytosis and adhesion are components of a bistable switch controlling neurite initiation in a substrate modulus-dependent manner. On soft substrates, most paxillin binds to endocytic factors and facilitates vesicle invagination, elevating neuritogenic Rac1 activity and expression of genes encoding the endocytic machinery. By contrast, on rigid substrates, cells develop extensive adhesions, increase RhoA activity and sequester paxillin from the endocytic machinery, thereby delaying neurite initiation. Our results highlight paxillin as a core molecule in substrate modulus-controlled morphogenesis and define a mechanism whereby neuronal cells respond to environments exhibiting varying mechanical properties.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ting-Ya Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Chen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Lee

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ya-Chu Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chi-Huan Lu

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. Shao-Tzu Lu

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. De-Yao Wang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  8. Aijun Wang

    Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Sacramento, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2985-3627
  9. Chin-Lin Guo

    Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  10. Pei-Lin Cheng

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    plcheng@imb.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0090-8153

Funding

Ministry of Science and Technology, Taiwan (Research Grant)

  • Pei-Lin Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,153
    views
  • 538
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ting-Ya Chang
  2. Chen Chen
  3. Min Lee
  4. Ya-Chu Chang
  5. Chi-Huan Lu
  6. Shao-Tzu Lu
  7. De-Yao Wang
  8. Aijun Wang
  9. Chin-Lin Guo
  10. Pei-Lin Cheng
(2017)
Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery
eLife 6:e31101.
https://doi.org/10.7554/eLife.31101

Share this article

https://doi.org/10.7554/eLife.31101

Further reading

    1. Cell Biology
    Swastika Sur, Maggie Kerwin ... Minnie M Sarwal
    Research Article

    Understanding the unique susceptibility of the human kidney to pH dysfunction and injury in cystinosis is paramount to developing new therapies to preserve renal function. Renal proximal tubular epithelial cells (RPTECs) and fibroblasts isolated from patients with cystinosis were transcriptionally profiled. Lysosomal fractionation, immunoblotting, confocal microscopy, intracellular pH, TEM, and mitochondrial stress test were performed for validation. CRISPR, CTNS -/- RPTECs were generated. Alterations in cell stress, pH, autophagic turnover, and mitochondrial energetics highlighted key changes in the V-ATPases in patient-derived and CTNS-/- RPTECs. ATP6V0A1 was significantly downregulated in cystinosis and highly co-regulated with loss of CTNS. Correction of ATP6V0A1 rescued cell stress and mitochondrial function. Treatment of CTNS -/- RPTECs with antioxidants ATX induced ATP6V0A1 expression and improved autophagosome turnover and mitochondrial integrity. Our exploratory transcriptional and in vitro cellular and functional studies confirm that loss of Cystinosin in RPTECs, results in a reduction in ATP6V0A1 expression, with changes in intracellular pH, mitochondrial integrity, mitochondrial function, and autophagosome-lysosome clearance. The novel findings are ATP6V0A1’s role in cystinosis-associated renal pathology and among other antioxidants, ATX specifically upregulated ATP6V0A1, improved autophagosome turnover or reduced autophagy and mitochondrial integrity. This is a pilot study highlighting a novel mechanism of tubular injury in cystinosis.

    1. Cell Biology
    2. Developmental Biology
    Yan Zhang, Hua Zhang
    Insight

    Long thought to have little relevance to ovarian physiology, the rete ovarii may have a role in follicular dynamics and reproductive health.