Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery

  1. Ting-Ya Chang
  2. Chen Chen
  3. Min Lee
  4. Ya-Chu Chang
  5. Chi-Huan Lu
  6. Shao-Tzu Lu
  7. De-Yao Wang
  8. Aijun Wang
  9. Chin-Lin Guo
  10. Pei-Lin Cheng  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. University of California, Davis, United States

Abstract

Neurite initiation is the first step in neuronal development and occurs spontaneously in soft tissue environments. Although the mechanisms regulating the morphology of migratory cells on rigid substrates in cell culture are widely known, how soft environments modulate neurite initiation remains elusive. Using hydrogel cultures, pharmacologic inhibition, and genetic approaches, we reveal that paxillin-linked endocytosis and adhesion are components of a bistable switch controlling neurite initiation in a substrate modulus-dependent manner. On soft substrates, most paxillin binds to endocytic factors and facilitates vesicle invagination, elevating neuritogenic Rac1 activity and expression of genes encoding the endocytic machinery. By contrast, on rigid substrates, cells develop extensive adhesions, increase RhoA activity and sequester paxillin from the endocytic machinery, thereby delaying neurite initiation. Our results highlight paxillin as a core molecule in substrate modulus-controlled morphogenesis and define a mechanism whereby neuronal cells respond to environments exhibiting varying mechanical properties.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ting-Ya Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Chen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Lee

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ya-Chu Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chi-Huan Lu

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. Shao-Tzu Lu

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. De-Yao Wang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  8. Aijun Wang

    Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis, Sacramento, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2985-3627
  9. Chin-Lin Guo

    Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  10. Pei-Lin Cheng

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    plcheng@imb.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0090-8153

Funding

Ministry of Science and Technology, Taiwan (Research Grant)

  • Pei-Lin Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Version history

  1. Received: August 9, 2017
  2. Accepted: December 20, 2017
  3. Accepted Manuscript published: December 22, 2017 (version 1)
  4. Accepted Manuscript updated: December 23, 2017 (version 2)
  5. Version of Record published: January 15, 2018 (version 3)

Copyright

© 2017, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,002
    views
  • 525
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ting-Ya Chang
  2. Chen Chen
  3. Min Lee
  4. Ya-Chu Chang
  5. Chi-Huan Lu
  6. Shao-Tzu Lu
  7. De-Yao Wang
  8. Aijun Wang
  9. Chin-Lin Guo
  10. Pei-Lin Cheng
(2017)
Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery
eLife 6:e31101.
https://doi.org/10.7554/eLife.31101

Share this article

https://doi.org/10.7554/eLife.31101

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.