Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure

  1. Jieqiong Gao
  2. Lars Langemeyer
  3. Daniel Kuemmel
  4. Fulvio Reggiori
  5. Christian Ungermann  Is a corresponding author
  1. University of Osnabrück, Germany
  2. University of Groningen, University Medical Center Groningen, Netherlands

Abstract

During autophagy, a newly formed double membrane surrounds its cargo to generate the so-called autophagosome, which then fuses with a lysosome after closure. Previous work implicated that endosomal Rab7/Ypt7 associates to autophagosomes prior to their fusion with lysosomes. Here, we unravel how the Mon1-Ccz1 guanosine exchange factor (GEF) acting upstream of Ypt7 is specifically recruited to the pre-autophagosomal structure under starvation conditions. We find that Mon1-Ccz1 directly binds to Atg8, the yeast homolog of the members of the mammalian LC3 protein family. This requires at least one LIR motif in the Ccz1 C-terminus, which is essential for autophagy but not for endosomal transport. In agreement, only wild-type, but not LIR-mutated Mon1-Ccz1 promotes Atg8-dependent activation of Ypt7. Our data reveal how GEF targeting can specify the fate of a newly formed organelle and provide new insights into the regulation of autophagosome-lysosome fusion.

Article and author information

Author details

  1. Jieqiong Gao

    Department of Biology and Chemistry, Biochemistry section, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lars Langemeyer

    Department of Biology and Chemistry, Biochemistry section, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Kuemmel

    Department of Biology and Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Fulvio Reggiori

    Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Ungermann

    Department of Biology and Chemistry, Biochemistry section, University of Osnabrück, Osnabrück, Germany
    For correspondence
    cu@uos.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4331-8695

Funding

Deutsche Forschungsgemeinschaft (UN111/7-3)

  • Christian Ungermann

Deutsche Forschungsgemeinschaft (SFB 944)

  • Daniel Kuemmel

ZonMw (VICI 016.130.606)

  • Fulvio Reggiori

European Commission (Marie Skłodowska-Curie ITN)

  • Fulvio Reggiori

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF Sinergia (CRSII3_154421)

  • Fulvio Reggiori

Deutsche Forschungsgemeinschaft (SFB 944)

  • Christian Ungermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Version history

  1. Received: August 9, 2017
  2. Accepted: February 12, 2018
  3. Accepted Manuscript published: February 15, 2018 (version 1)
  4. Version of Record published: March 7, 2018 (version 2)

Copyright

© 2018, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,905
    views
  • 673
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jieqiong Gao
  2. Lars Langemeyer
  3. Daniel Kuemmel
  4. Fulvio Reggiori
  5. Christian Ungermann
(2018)
Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure
eLife 7:e31145.
https://doi.org/10.7554/eLife.31145

Share this article

https://doi.org/10.7554/eLife.31145

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.