YTHDC1 Mediates Nuclear Export of N6-methyladenosine Methylated mRNAs

  1. Ian A Roundtree
  2. Guan-Zheng Luo
  3. Zijie Zhang
  4. Xiao Wang
  5. Tao Zhou
  6. Yiquang Cui
  7. Jiahao Sha
  8. Xingxu Huang
  9. Laura Guerrero
  10. Phil Xie
  11. Emily He
  12. Bin Shen  Is a corresponding author
  13. Chuan He  Is a corresponding author
  1. University of Chicago, United States
  2. ShanghaiTech University, China
  3. Nanjing Medical University, China
  4. The University of Chicago, United States

Abstract

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA), and plays critical roles in RNA biology. The function of this modification is mediated by m6A-selective 'reader' proteins of the YTH family, which incorporate m6A-modified mRNAs into pathways of RNA metabolism. Here, we show that the m6A-binding protein YTHDC1 mediates export of methylated mRNA from the nucleus to the cytoplasm in HeLa cells. Knockdown of YTHDC1 results in an extended residence time for nuclear m6A-containing mRNA, with an accumulation of transcripts in the nucleus and accompanying depletion within the cytoplasm. YTHDC1 interacts with the splicing factor and nuclear export adaptor protein SRSF3, and facilitates RNA binding to both SRSF3 and NXF1. This role for YTHDC1 expands the potential utility of chemical modification of mRNA, and supports an emerging paradigm of m6A as a distinct biochemical entity for selective processing and metabolism of mammalian mRNAs.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ian A Roundtree

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guan-Zheng Luo

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zijie Zhang

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiao Wang

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tao Zhou

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yiquang Cui

    State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiahao Sha

    State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xingxu Huang

    School of Life Science and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Laura Guerrero

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Phil Xie

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Emily He

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bin Shen

    State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
    For correspondence
    binshen@njmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Chuan He

    Department of Chemistry, The University of Chicago, Chicago, United States
    For correspondence
    chuanhe@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4319-7424

Funding

National Institute of General Medical Sciences (F30GM117646)

  • Ian A Roundtree

Howard Hughes Medical Institute

  • Ian A Roundtree
  • Guan-Zheng Luo
  • Zijie Zhang
  • Xiao Wang
  • Chuan He

National Science Foundation (CHE-1048528)

  • Ian A Roundtree
  • Guan-Zheng Luo
  • Zijie Zhang
  • Xiao Wang
  • Laura Guerrero
  • Phil Xie
  • Emily He
  • Chuan He

National Institute of General Medical Sciences (HG008688)

  • Chuan He

National Institute of General Medical Sciences (GM113194)

  • Chuan He

National Natural Science Foundation of China (31171377)

  • Xingxu Huang

National Natural Science Foundation of China (31471400)

  • Xingxu Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Roundtree et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,320
    views
  • 2,049
    downloads
  • 936
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian A Roundtree
  2. Guan-Zheng Luo
  3. Zijie Zhang
  4. Xiao Wang
  5. Tao Zhou
  6. Yiquang Cui
  7. Jiahao Sha
  8. Xingxu Huang
  9. Laura Guerrero
  10. Phil Xie
  11. Emily He
  12. Bin Shen
  13. Chuan He
(2017)
YTHDC1 Mediates Nuclear Export of N6-methyladenosine Methylated mRNAs
eLife 6:e31311.
https://doi.org/10.7554/eLife.31311

Share this article

https://doi.org/10.7554/eLife.31311

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.