LIPG signaling promotes tumor initiation and metastasis of human basal-like triple-negative breast cancer

  1. Pang-Kuo Lo
  2. Yuan Yao
  3. Ji Shin Lee
  4. Yongshu Zhang
  5. Weiliang Huang
  6. Maureen A Kane
  7. Qun Zhou  Is a corresponding author
  1. University of Maryland School of Medicine, United States
  2. Chonnam National University Medical School, Republic of Korea
  3. University of Maryland School of Pharmacy, United States

Abstract

Current understanding of aggressive human basal-like triple-negative breast cancer (TNBC) remains incomplete. In this study, we show endothelial lipase (LIPG) is aberrantly overexpressed in basal-like TNBCs. We demonstrate that LIPG is required for in vivo tumorigenicity and metastasis of TNBC cells. LIPG possesses a lipase-dependent function that supports cancer cell proliferation and a lipase-independent function that promotes invasiveness, stemness and basal/epithelial-mesenchymal transition features of TNBC. Mechanistically, LIPG executes its oncogenic function through its involvement in interferon-related DTX3L-ISG15 signaling, which regulates protein function and stability by ISGylation. We show that DTX3L, an E3-ubiquitin ligase, is required for maintaining LIPG protein levels in TNBC cells by inhibiting proteasome-mediated LIPG degradation. Inactivation of LIPG impairs DTX3L-ISG15 signaling, indicating the existence of DTX3L-LIPG-ISG15 signaling. We further reveal LIPG-ISG15 signaling is lipase-independent. We demonstrate that DTX3L-LIPG-ISG15 signaling is essential for malignancies of TNBC cells. Targeting this pathway provides a novel strategy for basal-like TNBC therapy.

Article and author information

Author details

  1. Pang-Kuo Lo

    Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuan Yao

    Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ji Shin Lee

    Department of Pathology, Chonnam National University Medical School, Chonnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Yongshu Zhang

    Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weiliang Huang

    Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maureen A Kane

    Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Qun Zhou

    Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
    For correspondence
    qzhou@som.umaryland.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1745-0369

Funding

National Cancer Institute (CA157779A1)

  • Qun Zhou

National Cancer Institute (CA163820A1)

  • Qun Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Ethics

Animal experimentation: This animal study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#0116028) of the University of Maryland School of Medicine.

Human subjects: Breast cancer tissue samples from breast cancer patients were provided by the Chonnam National University Hwasun Hospital National Biobank of Korea, a member of the National Biobank of Republic of Korea, which is supported by the Ministry of Health, Welfare and Family Affairs. All tissue samples were obtained with informed consent from patients under protocols approved by the institutional review board of the Chonnam National University Hwasun Hospital. The use of human tissue specimens in this study has been approved by the institutional review board of the Chonnam National University Hwasun Hospital (Reference number: CNUHH-2016-153). The institutional approval is not required for publication of data from these human specimens due to institutional policies of the Chonnam National University Hwasun Hospital.

Version history

  1. Received: August 18, 2017
  2. Accepted: January 18, 2018
  3. Accepted Manuscript published: January 19, 2018 (version 1)
  4. Version of Record published: February 12, 2018 (version 2)

Copyright

© 2018, Lo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,314
    views
  • 367
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pang-Kuo Lo
  2. Yuan Yao
  3. Ji Shin Lee
  4. Yongshu Zhang
  5. Weiliang Huang
  6. Maureen A Kane
  7. Qun Zhou
(2018)
LIPG signaling promotes tumor initiation and metastasis of human basal-like triple-negative breast cancer
eLife 7:e31334.
https://doi.org/10.7554/eLife.31334

Share this article

https://doi.org/10.7554/eLife.31334

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.