1. Structural Biology and Molecular Biophysics
  2. Computational and Systems Biology
Download icon

Pi-Pi contacts are an overlooked protein feature relevant to phase separation

Research Article
  • Cited 160
  • Views 12,371
  • Annotations
Cite this article as: eLife 2018;7:e31486 doi: 10.7554/eLife.31486

Abstract

Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Robert McCoy Vernon

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul Andrew Chong

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian Tsang

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Tae Hun Kim

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Alaji Bah

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Patrick Farber

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Hong Lin

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Julie Deborah Forman-Kay

    Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
    For correspondence
    forman@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8265-972X

Funding

Canadian Institutes of Health Research (114985)

  • Julie Deborah Forman-Kay

Natural Sciences and Engineering Research Council of Canada (6718)

  • Julie Deborah Forman-Kay

Canadian Cancer Society Research Institute (703477)

  • Julie Deborah Forman-Kay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Publication history

  1. Received: August 24, 2017
  2. Accepted: February 8, 2018
  3. Accepted Manuscript published: February 9, 2018 (version 1)
  4. Version of Record published: March 12, 2018 (version 2)

Copyright

© 2018, Vernon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,371
    Page views
  • 1,855
    Downloads
  • 160
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas et al.
    Tools and Resources

    For a more complete understanding of molecular mechanisms, it is important to study macromolecules and their assemblies in the broader context of the cell. This context can be visualized at nanometer resolution in three dimensions (3D) using electron cryo-tomography, which requires tilt series to be recorded and computationally aligned, currently limiting throughput. Additionally, the high-resolution signal preserved in the raw tomograms is currently limited by a number of technical difficulties, leading to an increased false-positive detection rate when using 3D template matching to find molecular complexes in tomograms. We have recently described a 2D template matching approach that addresses these issues by including high-resolution signal preserved in single-tilt images. A current limitation of this approach is the high computational cost that limits throughput. We describe here a GPU-accelerated implementation of 2D template matching in the image processing software cisTEM that allows for easy scaling and improves the accessibility of this approach. We apply 2D template matching to identify ribosomes in images of frozen-hydrated Mycoplasma pneumoniae cells with high precision and sensitivity, demonstrating that this is a versatile tool for in situ visual proteomics and in situ structure determination. We benchmark the results with 3D template matching of tomograms acquired on identical sample locations and identify strengths and weaknesses of both techniques, which offer complementary information about target localization and identity.

    1. Structural Biology and Molecular Biophysics
    Yanyan Liu et al.
    Research Article

    Plexins are semaphorin receptors that play essential roles in mammalian neuronal axon guidance and in many other important mammalian biological processes. Plexin signaling depends on a semaphorin-induced dimerization mechanism, and is modulated by small GTPases of the Rho family, of which RND1 serves as a plexin activator yet its close homolog RhoD an inhibitor. Using molecular dynamics (MD) simulations we showed that RND1 reinforces the plexin dimerization interface whereas RhoD destabilizes it due to their differential interaction with the cell membrane. Upon binding plexin at the Rho-GTPase binding domain (RBD), RND1 and RhoD interact differently with the inner leaflet of the cell membrane, and exert opposite effects on the dimerization interface via an allosteric network involving the RBD, RBD linkers, and a buttress segment adjacent to the dimerization interface. The differential membrane interaction is attributed to the fact that, unlike RND1, RhoD features a short C-terminal tail and a positively charged membrane interface.