1. Neuroscience
Download icon

Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila

  1. Kathrin Steck
  2. Samuel J Walker
  3. Pavel M Itskov
  4. Celia Baltazar
  5. José-Maria Moreira
  6. Carlos Ribeiro  Is a corresponding author
  1. Champalimaud Centre for the Unknown, Portugal
Research Article
  • Cited 37
  • Views 4,952
  • Annotations
Cite this article as: eLife 2018;7:e31625 doi: 10.7554/eLife.31625

Abstract

To optimize fitness, animals must dynamically match food choices to their current needs. For drosophilids, yeast fulfils most dietary protein and micronutrient requirements. While several yeast metabolites activate known gustatory receptor neurons (GRNs) in Drosophila melanogaster, the chemosensory channels mediating yeast feeding remain unknown. Here we identify a class of proboscis GRNs required for yeast intake. Within this class, taste peg GRNs are specifically required to sustain yeast feeding. Sensillar GRNs, however, mediate feeding initiation. Furthermore, the response of yeast GRNs, but not sweet GRNs, is enhanced following deprivation from amino acids, providing a potential basis for protein-specific appetite. Although nutritional and reproductive states synergistically increase yeast appetite, reproductive state acts independently of nutritional state, modulating processing downstream of GRNs. Together, these results suggest that different internal states act at distinct levels of a dedicated gustatory circuit to elicit nutrient-specific appetites towards a complex, ecologically relevant protein source.

Article and author information

Author details

  1. Kathrin Steck

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  2. Samuel J Walker

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Pavel M Itskov

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    Pavel M Itskov, PMI has a commercial interest in the flyPAD open-source technology.
  4. Celia Baltazar

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  5. José-Maria Moreira

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  6. Carlos Ribeiro

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    carlos.ribeiro@neuro.fchampalimaud.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9542-7335

Funding

Fundação para a Ciência e a Tecnologia (PTDC/BIA-BCM/118684/2010)

  • Carlos Ribeiro

Fundação para a Ciência e a Tecnologia (SFRH/BPD/79325/2011)

  • Pavel M Itskov

Human Frontier Science Program (RGP0022/2012)

  • Carlos Ribeiro

Fundação Bial (283/14)

  • Carlos Ribeiro

Fundação Bial (279/16)

  • Carlos Ribeiro

European Commission (FLiACT ITN)

  • Carlos Ribeiro

Champalimaud Foundation

  • Carlos Ribeiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: August 30, 2017
  2. Accepted: January 19, 2018
  3. Accepted Manuscript published: February 2, 2018 (version 1)
  4. Version of Record published: February 14, 2018 (version 2)

Copyright

© 2018, Steck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,952
    Page views
  • 750
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Cassandra L Hays et al.
    Research Article Updated

    Vision under starlight requires rod photoreceptors to transduce and transmit single-photon responses to the visual system. Small single-photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring two to three times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single-photon responses to post-synaptic rod-bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.

    1. Neuroscience
    Qiang Qiu et al.
    Research Article Updated

    Animals possess an inborn ability to recognize certain odors to avoid predators, seek food, and find mates. Innate odor preference is thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Exposure to innately recognized odors during the critical period abolishes the associated valence in adulthood in an odor-specific manner. The changes are associated with broadened projection of olfactory sensory neurons and expression of axon guidance molecules. Thus, a delicate balance of neural activity is needed during the critical period in establishing innate odor preference and convergent axon input is required to encode innate odor valence.