Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila

Abstract

To optimize fitness, animals must dynamically match food choices to their current needs. For drosophilids, yeast fulfils most dietary protein and micronutrient requirements. While several yeast metabolites activate known gustatory receptor neurons (GRNs) in Drosophila melanogaster, the chemosensory channels mediating yeast feeding remain unknown. Here we identify a class of proboscis GRNs required for yeast intake. Within this class, taste peg GRNs are specifically required to sustain yeast feeding. Sensillar GRNs, however, mediate feeding initiation. Furthermore, the response of yeast GRNs, but not sweet GRNs, is enhanced following deprivation from amino acids, providing a potential basis for protein-specific appetite. Although nutritional and reproductive states synergistically increase yeast appetite, reproductive state acts independently of nutritional state, modulating processing downstream of GRNs. Together, these results suggest that different internal states act at distinct levels of a dedicated gustatory circuit to elicit nutrient-specific appetites towards a complex, ecologically relevant protein source.

Article and author information

Author details

  1. Kathrin Steck

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  2. Samuel J Walker

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Pavel M Itskov

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    Pavel M Itskov, PMI has a commercial interest in the flyPAD open-source technology.
  4. Celia Baltazar

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  5. José-Maria Moreira

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  6. Carlos Ribeiro

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    carlos.ribeiro@neuro.fchampalimaud.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9542-7335

Funding

Fundação para a Ciência e a Tecnologia (PTDC/BIA-BCM/118684/2010)

  • Carlos Ribeiro

Fundação para a Ciência e a Tecnologia (SFRH/BPD/79325/2011)

  • Pavel M Itskov

Human Frontier Science Program (RGP0022/2012)

  • Carlos Ribeiro

Fundação Bial (283/14)

  • Carlos Ribeiro

Fundação Bial (279/16)

  • Carlos Ribeiro

European Commission (FLiACT ITN)

  • Carlos Ribeiro

Champalimaud Foundation

  • Carlos Ribeiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: August 30, 2017
  2. Accepted: January 19, 2018
  3. Accepted Manuscript published: February 2, 2018 (version 1)
  4. Version of Record published: February 14, 2018 (version 2)

Copyright

© 2018, Steck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,705
    views
  • 965
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathrin Steck
  2. Samuel J Walker
  3. Pavel M Itskov
  4. Celia Baltazar
  5. José-Maria Moreira
  6. Carlos Ribeiro
(2018)
Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila
eLife 7:e31625.
https://doi.org/10.7554/eLife.31625

Share this article

https://doi.org/10.7554/eLife.31625

Further reading

    1. Neuroscience
    Yangang Li, Xinyun Zhu ... Yueming Wang
    Research Article

    In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.