Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila

Abstract

To optimize fitness, animals must dynamically match food choices to their current needs. For drosophilids, yeast fulfils most dietary protein and micronutrient requirements. While several yeast metabolites activate known gustatory receptor neurons (GRNs) in Drosophila melanogaster, the chemosensory channels mediating yeast feeding remain unknown. Here we identify a class of proboscis GRNs required for yeast intake. Within this class, taste peg GRNs are specifically required to sustain yeast feeding. Sensillar GRNs, however, mediate feeding initiation. Furthermore, the response of yeast GRNs, but not sweet GRNs, is enhanced following deprivation from amino acids, providing a potential basis for protein-specific appetite. Although nutritional and reproductive states synergistically increase yeast appetite, reproductive state acts independently of nutritional state, modulating processing downstream of GRNs. Together, these results suggest that different internal states act at distinct levels of a dedicated gustatory circuit to elicit nutrient-specific appetites towards a complex, ecologically relevant protein source.

Article and author information

Author details

  1. Kathrin Steck

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  2. Samuel J Walker

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  3. Pavel M Itskov

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    Pavel M Itskov, PMI has a commercial interest in the flyPAD open-source technology.
  4. Celia Baltazar

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  5. José-Maria Moreira

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    No competing interests declared.
  6. Carlos Ribeiro

    Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
    For correspondence
    carlos.ribeiro@neuro.fchampalimaud.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9542-7335

Funding

Fundação para a Ciência e a Tecnologia (PTDC/BIA-BCM/118684/2010)

  • Carlos Ribeiro

Fundação para a Ciência e a Tecnologia (SFRH/BPD/79325/2011)

  • Pavel M Itskov

Human Frontier Science Program (RGP0022/2012)

  • Carlos Ribeiro

Fundação Bial (283/14)

  • Carlos Ribeiro

Fundação Bial (279/16)

  • Carlos Ribeiro

European Commission (FLiACT ITN)

  • Carlos Ribeiro

Champalimaud Foundation

  • Carlos Ribeiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Steck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,868
    views
  • 981
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathrin Steck
  2. Samuel J Walker
  3. Pavel M Itskov
  4. Celia Baltazar
  5. José-Maria Moreira
  6. Carlos Ribeiro
(2018)
Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila
eLife 7:e31625.
https://doi.org/10.7554/eLife.31625

Share this article

https://doi.org/10.7554/eLife.31625

Further reading

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.