Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

  1. Markus Johannes Van Ackeren
  2. Francesca M Barbero
  3. Stefania Mattioni
  4. Roberto Bottini
  5. Olivier Collignon  Is a corresponding author
  1. University of Trento, Italy
  2. University of Louvain, Belgium

Abstract

The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture allowing the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives.

Article and author information

Author details

  1. Markus Johannes Van Ackeren

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Francesca M Barbero

    Institute of Research in Psychology, University of Louvain, Louvain, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefania Mattioni

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Roberto Bottini

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Olivier Collignon

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    For correspondence
    olivier.collignon@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1882-3550

Funding

H2020 European Research Council (337573)

  • Markus Johannes Van Ackeren
  • Stefania Mattioni
  • Roberto Bottini
  • Olivier Collignon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The project was approved by the local ethical committee at the University of Trento (protocol 2014-007). In agreement with the Declaration of Helsinki, all participants provided written informed consent to participate in the study.

Copyright

© 2018, Van Ackeren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,905
    views
  • 273
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus Johannes Van Ackeren
  2. Francesca M Barbero
  3. Stefania Mattioni
  4. Roberto Bottini
  5. Olivier Collignon
(2018)
Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech
eLife 7:e31640.
https://doi.org/10.7554/eLife.31640

Share this article

https://doi.org/10.7554/eLife.31640

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.