Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions

  1. Caitlin N Spaulding
  2. Henry Louis Schreiber
  3. Weili Zheng
  4. Karen W Dodson
  5. Jennie E Hazen
  6. Matt S Conover
  7. Fengbin Wang
  8. Pontus Svenmarker
  9. Areli Luna-Rico
  10. Olivera Francetic
  11. Magnus Andersson
  12. Scott Hultgren  Is a corresponding author
  13. Edward H Egelman
  1. Washington University School of Medicine, United States
  2. University of Virginia, United States
  3. Umeå University, Sweden
  4. Institut Pasteur, France

Abstract

Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Caitlin N Spaulding

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Henry Louis Schreiber

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4501-9886
  3. Weili Zheng

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. Karen W Dodson

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Jennie E Hazen

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Matt S Conover

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Fengbin Wang

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  8. Pontus Svenmarker

    Department of Physics, Umeå University, Umeå, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1308-4923
  9. Areli Luna-Rico

    Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7538-5441
  10. Olivera Francetic

    Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-5314
  11. Magnus Andersson

    Department of Physics, Umeå University, Umeå, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9835-3263
  12. Scott Hultgren

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    For correspondence
    hultgren@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8785-564X
  13. Edward H Egelman

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    Edward H Egelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4844-5212

Funding

National Institutes of Health (GM122510)

  • Edward H Egelman

Washington University School of Medicine (Monsanto Excellence Fund Graduate Fellowship)

  • Henry Louis Schreiber

National Institutes of Health (AI048689)

  • Scott Hultgren

National Institutes of Health (DK064540)

  • Scott Hultgren

National Institutes of Health (1F31DK107057)

  • Caitlin N Spaulding

National Institutes of Health (DK101171-02)

  • Matt S Conover

Svenska Forskningsrådet Formas (621-2013-5379)

  • Magnus Andersson

Agence Nationale de la Recherche (ANR-14-CE09-0004)

  • Olivera Francetic

Paris Pasteur University (Graduate Research Fellowship)

  • Areli Luna-Rico

Washington University School of Medicine (Lucille P. Markey Pathway for Pathobiology)

  • Henry Louis Schreiber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Washington University Animal Studies Committee approved all procedures used for the mouse experiments described in the present study (Protocol Application Number 20150226). Overall care of the animals was consistent with The Guide for the Care and Use of Laboratory Animals from the National Research Council and the USDA Animal Care Resource Guide. Every effort was made to minimize suffering.

Copyright

© 2018, Spaulding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,963
    views
  • 519
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caitlin N Spaulding
  2. Henry Louis Schreiber
  3. Weili Zheng
  4. Karen W Dodson
  5. Jennie E Hazen
  6. Matt S Conover
  7. Fengbin Wang
  8. Pontus Svenmarker
  9. Areli Luna-Rico
  10. Olivera Francetic
  11. Magnus Andersson
  12. Scott Hultgren
  13. Edward H Egelman
(2018)
Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions
eLife 7:e31662.
https://doi.org/10.7554/eLife.31662

Share this article

https://doi.org/10.7554/eLife.31662

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.