Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions

  1. Caitlin N Spaulding
  2. Henry Louis Schreiber
  3. Weili Zheng
  4. Karen W Dodson
  5. Jennie E Hazen
  6. Matt S Conover
  7. Fengbin Wang
  8. Pontus Svenmarker
  9. Areli Luna-Rico
  10. Olivera Francetic
  11. Magnus Andersson
  12. Scott Hultgren  Is a corresponding author
  13. Edward H Egelman
  1. Washington University School of Medicine, United States
  2. University of Virginia, United States
  3. Umeå University, Sweden
  4. Institut Pasteur, France

Abstract

Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Caitlin N Spaulding

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Henry Louis Schreiber

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4501-9886
  3. Weili Zheng

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. Karen W Dodson

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Jennie E Hazen

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Matt S Conover

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Fengbin Wang

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  8. Pontus Svenmarker

    Department of Physics, Umeå University, Umeå, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1308-4923
  9. Areli Luna-Rico

    Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7538-5441
  10. Olivera Francetic

    Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4145-5314
  11. Magnus Andersson

    Department of Physics, Umeå University, Umeå, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9835-3263
  12. Scott Hultgren

    Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, United States
    For correspondence
    hultgren@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8785-564X
  13. Edward H Egelman

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    Edward H Egelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4844-5212

Funding

National Institutes of Health (GM122510)

  • Edward H Egelman

Washington University School of Medicine (Monsanto Excellence Fund Graduate Fellowship)

  • Henry Louis Schreiber

National Institutes of Health (AI048689)

  • Scott Hultgren

National Institutes of Health (DK064540)

  • Scott Hultgren

National Institutes of Health (1F31DK107057)

  • Caitlin N Spaulding

National Institutes of Health (DK101171-02)

  • Matt S Conover

Svenska Forskningsrådet Formas (621-2013-5379)

  • Magnus Andersson

Agence Nationale de la Recherche (ANR-14-CE09-0004)

  • Olivera Francetic

Paris Pasteur University (Graduate Research Fellowship)

  • Areli Luna-Rico

Washington University School of Medicine (Lucille P. Markey Pathway for Pathobiology)

  • Henry Louis Schreiber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Washington University Animal Studies Committee approved all procedures used for the mouse experiments described in the present study (Protocol Application Number 20150226). Overall care of the animals was consistent with The Guide for the Care and Use of Laboratory Animals from the National Research Council and the USDA Animal Care Resource Guide. Every effort was made to minimize suffering.

Reviewing Editor

  1. Michael S Gilmore, Harvard Medical School, United States

Publication history

  1. Received: August 31, 2017
  2. Accepted: January 12, 2018
  3. Accepted Manuscript published: January 18, 2018 (version 1)
  4. Version of Record published: February 5, 2018 (version 2)

Copyright

© 2018, Spaulding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,439
    Page views
  • 432
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caitlin N Spaulding
  2. Henry Louis Schreiber
  3. Weili Zheng
  4. Karen W Dodson
  5. Jennie E Hazen
  6. Matt S Conover
  7. Fengbin Wang
  8. Pontus Svenmarker
  9. Areli Luna-Rico
  10. Olivera Francetic
  11. Magnus Andersson
  12. Scott Hultgren
  13. Edward H Egelman
(2018)
Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions
eLife 7:e31662.
https://doi.org/10.7554/eLife.31662

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Ved Mehta et al.
    Research Article

    Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c / Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signaling is well established, the function of their transmembrane (TM) regions remains unknown. Here we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.

    1. Structural Biology and Molecular Biophysics
    Josip Ivica et al.
    Research Article

    To clarify the determinants of agonist efficacy in pentameric ligand-gated ion channels we examined a new compound, aminomethanesulfonic acid (AMS), a molecule intermediate in structure between glycine and taurine. Despite wide availability, to date there are no reports of AMS action on glycine receptors, perhaps because AMS is unstable at physiological pH. Here we show that at pH 5, AMS is an efficacious agonist, eliciting in zebrafish α1 glycine receptors a maximum single channel open probability of 0.85, much greater than that of β-alanine (0.54) or taurine (0.12), and second only to that of glycine itself (0.96). Thermodynamic cycle analysis of the efficacy of these closely related agonists shows supra-additive interaction between changes in the length of the agonist molecule and the size of the anionic moiety. Single particle cryo-EM structures of AMS-bound glycine receptors show that the AMS-bound agonist pocket is as compact as with glycine, and three-dimensional classification demonstrates that the channel populates the open and the desensitized states, like glycine, but not the closed intermediate state associated with the weaker partial agonists, β-alanine and taurine. Because AMS is on the cusp between full and partial agonists, it provides a new tool to help us understand agonist action in the pentameric superfamily of ligand-gated ion channels.